【題目】已知函數(shù).

1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

2)若函數(shù)處取得極小值,求實(shí)數(shù)a的取值范圍.

【答案】(1)函數(shù)在區(qū)間單調(diào)遞減(2)

【解析】

1)當(dāng)時(shí),求得函數(shù)的導(dǎo)數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)性與最值,進(jìn)而得出的符號(hào),即可求解函數(shù)的單調(diào)性;

2)求得函數(shù)導(dǎo)數(shù),構(gòu)造新函數(shù),求得的導(dǎo)數(shù),分,,,四種情況討論,求得的單調(diào)性與最值,得出單調(diào)性,即可求解的極值,進(jìn)而得到的范圍.

1)當(dāng)時(shí),,定義域?yàn)?/span>,

,設(shè),則,

當(dāng)時(shí),,當(dāng)時(shí),

所以函數(shù)單調(diào)遞增,在單調(diào)遞減,

的最大值為,所以當(dāng)時(shí),,即

所以函數(shù)在區(qū)間單調(diào)遞減

2)由已知得:,則,

,則,

①若時(shí),則當(dāng)時(shí)單調(diào)遞增

且當(dāng)時(shí),,即

當(dāng)時(shí),,即

,所以函數(shù)處取得極小值,滿足題意.

②若時(shí),則,當(dāng)時(shí),,故函數(shù)區(qū)間單調(diào)遞增,

且當(dāng)時(shí)

當(dāng)時(shí),即

,所以函數(shù)處取得極小值,滿足題意.

③若時(shí),則,由(1)知函數(shù)在區(qū)間單調(diào)遞減,

在區(qū)間單調(diào)遞減,不滿足題意.

④若時(shí),則,當(dāng)時(shí),故函數(shù)單調(diào)遞減

且當(dāng)時(shí),,即

當(dāng)時(shí),,即,又,

所以函數(shù)處取得極大值,不滿足題意.

綜上,實(shí)數(shù)a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面,,的中點(diǎn)..

(1)求證:平面平面;

(2),在線段上是否存在一點(diǎn),使得二面角的余弦值為.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直線xx1,xx2yf(x)圖象的任意兩條對(duì)稱軸,且|x1x2|的最小值為 .

(Ⅰ)求f(x)的表達(dá)式;

(Ⅱ)將函數(shù)f(x)的圖象向右平移個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)當(dāng)時(shí),求函數(shù)處的切線方程;

(2)若函數(shù)存在兩個(gè)極值點(diǎn),求的取值范圍;

(3)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過(guò)的直線交軸正半軸于點(diǎn),交拋物線于兩點(diǎn),其中點(diǎn)在第一象限.

)求證:以線段為直徑的圓與軸相切;

)若,,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表為年至年某百貨零售企業(yè)的線下銷售額(單位:萬(wàn)元),其中年份代碼年份

年份代碼

線下銷售額

(1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)年該百貨零售企業(yè)的線下銷售額;

(2)隨著網(wǎng)絡(luò)購(gòu)物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長(zhǎng)表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長(zhǎng)的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂(lè)觀態(tài)度”和“持不樂(lè)觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長(zhǎng)持樂(lè)觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)拋物線的準(zhǔn)線軸交于橢圓的右焦點(diǎn),為左焦點(diǎn),橢圓的離心率為,拋物線與橢圓交于軸上方一點(diǎn),連接并延長(zhǎng)于點(diǎn)上一動(dòng)點(diǎn),且在之間移動(dòng).

(1)當(dāng)取最小值時(shí),求的方程;

(2)若的邊長(zhǎng)恰好是三個(gè)連接的自然數(shù),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹(shù)上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測(cè)重,其質(zhì)量分別在, , , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)按分層抽樣的方法從質(zhì)量落在, 的蜜柚中抽取5個(gè),再?gòu)倪@5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹(shù)上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購(gòu)方案:

A.所有蜜柚均以40元/千克收購(gòu);

B.低于2250克的蜜柚以60元/個(gè)收購(gòu),高于或等于2250克的以80元/個(gè)收購(gòu).

請(qǐng)你通過(guò)計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意∈D,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的平底型函數(shù).

)判斷函數(shù)是否為R上的平底型函數(shù)? 并說(shuō)明理由;

)設(shè)是()中的平底型函數(shù),k為非零常數(shù),若不等式對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;

)若函數(shù)是區(qū)間上的平底型函數(shù),求的值.

.

查看答案和解析>>

同步練習(xí)冊(cè)答案