已知函數(shù).
(1)設(shè),且,求的值;
(2)在△ABC中,AB=1,,且△ABC的面積為,求sinA+sinB的值.
(1),(2)
解析試題分析:(1)研究三角函數(shù)性質(zhì),首先將三角函數(shù)化為基本三角函數(shù)形式,即:==.再由得于是,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/94/1/1ycgm3.png" style="vertical-align:middle;" />,所以.(2)解三角形,基本方法利用正余弦定理進(jìn)行邊角轉(zhuǎn)化. 因?yàn)椤鰽BC的面積為,所以,于是.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/34/c/qnmdw2.png" style="vertical-align:middle;" />,由(1)知.由余弦定理得,所以.可得或由正弦定理得,所以.
【解】(1)==.
由,得,
于是,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a7/8/1zrni3.png" style="vertical-align:middle;" />,所以.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/34/c/qnmdw2.png" style="vertical-align:middle;" />,由(1)知.
因?yàn)椤鰽BC的面積為,所以,于是. ①
在△ABC中,設(shè)內(nèi)角A、B的對(duì)邊分別是a,b.
由余弦定理得,所以. ②
由①②可得或 于是.
由正弦定理得,
所以.
考點(diǎn):三角函數(shù)性質(zhì),正余弦定理
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,A、B、C是三角形的三內(nèi)角,是三內(nèi)角對(duì)應(yīng)的三邊,已知.(1)求角A的大小;(2)若=,且△ABC的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是邊長為1的正三角形,分別是邊上的點(diǎn),
段過的重心,設(shè).
(1)當(dāng)時(shí),求的長;
(2)分別記的面積為,試將表示為的函數(shù);
(3)求的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知角A、B、C為△ABC的三個(gè)內(nèi)角,其對(duì)邊分別為a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.
(1)若△ABC的面積S=,求b+c的值.
(2)求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在中,角所對(duì)的邊分別為,且滿足.
(1) 求角的大小;
(2) 當(dāng)取得最大值時(shí),請判斷的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知中,,點(diǎn)是邊上的動(dòng)點(diǎn),動(dòng)點(diǎn)滿足(點(diǎn)按逆時(shí)針方向排列).
(1)若,求的長;
(2)求△面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com