若雙曲線
x2
a2
-
y2
b2
=1(a>b>0)左支上一點P到右焦點的距離為8,則P到左準(zhǔn)線的距離為
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線的定義,可得P到左焦點的距離為8-2a,利用雙曲線的第二定義,即可得出結(jié)論.
解答: 解:∵雙曲線
x2
a2
-
y2
b2
=1(a>b>0)左支上一點P到右焦點的距離為8,
∴P到左焦點的距離為8-2a,
設(shè)P到左準(zhǔn)線的距離為d,則
8-2a
d
=
c
a
,
∴d=
a(8-2a)
a2+b2

故答案為:
a(8-2a)
a2+b2
點評:本題考查雙曲線的定義,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[0,1],且同時滿足以下三個條件:①f(1)=1;②對任意的x∈[0,1],都有f(x)≥0; ③當(dāng)x≥0,y≥0,x+y≤1時總有f(x+y)≥f(x)+f(y).
(1)試求f(0)的值;
(2)求f(x)的最大值;
(3)證明:當(dāng)x∈[
1
4
,1]
時,恒有2x≥f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n∈N*,則
lim
n→∞
3n+1-2n+1
3n+2n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線過點P(2,1),則其離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=8x上兩點M、N到焦點F的距離分別是d1,d2,若d1+d2=5,則線段MN的中點P到y(tǒng)軸的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果對定義在R上的函數(shù)f(x),對任意兩個不相等的實數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)為“H函數(shù)”.給出下列函數(shù)①y=-x3+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④f(x)=
ln|x|
 
 
 
,x≠0
0
 
 
 
 
 
 
,x=0
.以上函數(shù)是“H函數(shù)”的所有序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的有
 

①若點P(x0,y0)是拋物線y2=2px上一點,則該點到拋物線的焦點F的距離是|PF|=x0+
P
2

②方程x2+y2-2x+1=0表示的圖形是圓;
③設(shè)定圓O上有一動點A,圓O內(nèi)一定點M,AM的垂直平分線與半徑OA的交點為點P,則P的軌跡為一橢圓;
④某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=13;
⑤雙曲線
y2
49
-
x2
25
=-1的漸近線方程是y=±
5
7
x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(|x-1|+|x-2|-3)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,若對任意的n∈N*時,不等式(an-20)ln(
n
a
)≥0
恒成立,則a的取值范圍是(  )
A、(-∞,5]
B、[4,5]
C、(4,5)
D、[1,5]

查看答案和解析>>

同步練習(xí)冊答案