【題目】已知函數(shù).

(1)求證:對任意實數(shù),都有;

(2)若,是否存在整數(shù),使得在上,恒有成立?若存在,請求出的最大值;若不存在,請說明理由.(

【答案】(1)見證明;(2)見解析

【解析】

1)利用導(dǎo)數(shù)求得 ,令,再利用導(dǎo)數(shù)即可求得,問題得證。

2)整理得:,令:,由,對是否大于分類, 當(dāng)時,即時,利用導(dǎo)數(shù)即可證得,當(dāng)時,利用導(dǎo)數(shù)即可求得,要使不等式恒成立轉(zhuǎn)化成成立,令,利用導(dǎo)數(shù)即可求得,,即可求得,問題得解。

解:(1)證明:由已知易得,所以

得:

顯然,時,<0,函數(shù)f(x)單調(diào)遞減;

時,>0,函數(shù)f(x)單調(diào)遞增

所以

,則由

時,>0,函數(shù)t()單調(diào)遞增;

時,<0,函數(shù)t()單調(diào)遞減

所以,即結(jié)論成立.

(2)由題設(shè)化簡可得

,所以

=0得

①若,即時,在上,有,故函數(shù)單調(diào)遞增

所以

②若,即時,

上,有,故函數(shù)上單調(diào)遞減

上,有.故函數(shù)上單調(diào)遞增

所以,在上,

故欲使,只需即可

所以,時,,即單調(diào)遞減

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ln(a x)+bx在點(1,f(1))處的切線是y=0;

(I)求函數(shù)f(x)的極值;

(II)當(dāng)恒成立時,求實數(shù)m的取值范圍(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為為橢圓上一動點,當(dāng)的面積最大時,其內(nèi)切圓半徑為,設(shè)過點的直線被橢圓截得線段,

當(dāng)軸時,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點為橢圓的左頂點,是橢圓上異于左、右頂點的兩點,設(shè)直線的斜率分別為,若,試問直線是否過定點?若過定點,求該定點的坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓長軸的一個端點是拋物線的焦點,且橢圓焦點與拋物線焦點的距離是1。

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若是橢圓的左右端點,為原點,是橢圓上異于的任意一點,直線分別交軸于,問是否為定值,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,,,點的中點.

1)求證:平面;

2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一容積為的正方體容器,在棱、和面對角線的中點各有一小孔、,若此容器可以任意放置,則其可裝水的最大容積是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知美國蘋果公司生產(chǎn)某款iphone手機的年固定成本為40萬美元,每生產(chǎn)1萬部還需要另外投入16美元,設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iphone手機萬部并全部銷售完,每萬部的銷售收入為萬元,且.

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬部時,蘋果公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,點分別為的中點.

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的定義域恰是不等式的解集,其值域為,函數(shù)的定義域為,值域為.

1)求定義域和值域;

2)試用單調(diào)性的定義法解決問題:若存在實數(shù),使得函數(shù)上單調(diào)遞減,上單調(diào)遞增,求實數(shù)的取值范圍并用表示;

3)是否存在實數(shù),使成立?若存在,求實數(shù)的取值范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案