【題目】下列命題中,假命題的個數(shù)是( )
(1)若直線a在平面上,直線b不在平面上,則a,b是異面直線;
(2)若a,b是異面直線、則與a,b都垂直的直線有且只有一條
(3)若a,b是異面直線、若c,d與直線a,b都相交,則c,d也是異面直線
(4)設(shè)a,b是兩條直線,若平面,,則平面.
A.1個B.2個C.3個D.4個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前用外賣網(wǎng)點(diǎn)餐的人越來越多.現(xiàn)對大眾等餐所需時間情況進(jìn)行隨機(jī)調(diào)查,并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖).其中等餐所需時間的范圍是,樣本數(shù)據(jù)分組為, ,,,.
(1)求直方圖中的值;
(2)某同學(xué)在某外賣網(wǎng)點(diǎn)了一份披薩,試估計他等餐時間不多于小時的概率;
(3)現(xiàn)有名學(xué)生都分別通過外賣網(wǎng)進(jìn)行了點(diǎn)餐,這名學(xué)生中等餐所需時間少于小時的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),m∈R
(1)討論f(x)的單調(diào)性;
(2)若m∈(-1,0),證明:對任意的x1,x2∈[1,1-m],4f(x1)+x2<5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨(dú)立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個居民小區(qū)的居委會欲組織本小區(qū)的中學(xué)生,利用雙休日去市郊的敬老院參加獻(xiàn)愛心活動.兩個校區(qū)每位同學(xué)的往返車費(fèi)及服務(wù)老人的人數(shù)如下表:
小區(qū) | 小區(qū) | |
往返車費(fèi) | 3元 | 5元 |
服務(wù)老人的人數(shù) | 5人 | 3人 |
根據(jù)安排,去敬老院的往返總車費(fèi)不能超過37元,且小區(qū)參加獻(xiàn)愛心活動的同學(xué)比小區(qū)的同學(xué)至少多1人,則接受服務(wù)的老人最多有____人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,曲線由部分橢圓:和部分拋物線:連接而成,與的公共點(diǎn)為,,其中所在橢圓的離心率為.
(Ⅰ)求,的值;
(Ⅱ)過點(diǎn)的直線與,分別交于點(diǎn),(,,,中任意兩點(diǎn)均不重合),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“科技引領(lǐng),布局未來”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動力量。年,某企業(yè)連續(xù)年累計研發(fā)投入搭億元,我們將研發(fā)投入與經(jīng)營投入的比值記為研發(fā)投入占營收比,這年間的研發(fā)投入(單位:十億元)用右圖中的折現(xiàn)圖表示,根據(jù)折線圖和條形圖,下列結(jié)論錯誤的使( )
A. 年至年研發(fā)投入占營收比增量相比年至年增量大
B. 年至年研發(fā)投入增量相比年至年增量小
C. 該企業(yè)連續(xù)年研發(fā)投入逐年增加
D. 該企業(yè)來連續(xù)年來研發(fā)投入占營收比逐年增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸端點(diǎn)為,,點(diǎn)是橢圓上的動點(diǎn),且不與,重合,點(diǎn)滿足,.
(Ⅰ)求動點(diǎn)的軌跡方程;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時也解決了很多勞動力的就業(yè)問題,據(jù)某著名網(wǎng)約車公司“滴滴打車”官網(wǎng)顯示,截止目前,該公司已經(jīng)累計解決退伍軍人轉(zhuǎn)業(yè)為兼職或?qū)B毸緳C(jī)三百多萬人次,梁某即為此類網(wǎng)約車司機(jī),據(jù)梁某自己統(tǒng)計某一天出車一次的總路程數(shù)可能的取值是20、22、24、26、28、,它們出現(xiàn)的概率依次是、、、、t、.
(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;
(2)網(wǎng)約車計費(fèi)細(xì)則如下:起步價為5元,行駛路程不超過時,租車費(fèi)為5元,若行駛路程超過,則按每超出(不足也按計程)收費(fèi)3元計費(fèi).依據(jù)以上條件,計算梁某一天中出車一次收入的均值和方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com