【題目】目前用外賣網點餐的人越來越多.現對大眾等餐所需時間情況進行隨機調查,并將所得數據繪制成頻率分布直方圖(如圖).其中等餐所需時間的范圍是,樣本數據分組為, ,,,.
(1)求直方圖中的值;
(2)某同學在某外賣網點了一份披薩,試估計他等餐時間不多于小時的概率;
(3)現有名學生都分別通過外賣網進行了點餐,這名學生中等餐所需時間少于小時的人數記為,求的分布列和數學期望.(以直方圖中的頻率作為概率)
科目:高中數學 來源: 題型:
【題目】如圖1,在中,分別是上的點,且,將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)若是的中點,求與平面所成角的大小;
(3)線段上是否存在點,使平面與平面垂直?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一列非零向量滿足:,,其中是正數
(1)求數列的通項公式;
(2)求證:當時,向量與的夾角為定值;
(3)當時,把中所有與共線的向量按原來的順序排成一列,記為,令,為坐標原點,求點列的極限點的坐標.(注:若點坐標為,且,則稱點為點列的極限點)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中藥種植基地有兩處種植區(qū)的藥材需在下周一、下周二兩天內采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘.由于下雨會影響藥材品質,基地收益如下表所示:
周一 | 無雨 | 無雨 | 有雨 | 有雨 |
周二 | 無雨 | 有雨 | 無雨 | 有雨 |
收益 | 萬元 | 萬元 | 萬元 | 萬元 |
若基地額外聘請工人,可在周一當天完成全部采摘任務.無雨時收益為萬元;有雨時,收益為萬元.額外聘請工人的成本為萬元.
已知下周一和下周二有雨的概率相同,兩天是否下雨互不影響,基地收益為萬元的概率為.
(Ⅰ)若不額外聘請工人,寫出基地收益的分布列及基地的預期收益;
(Ⅱ)該基地是否應該外聘工人,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若無窮數列滿足:,當',時, (其中表示,,…,中的最大項),有以下結論:
① 若數列是常數列,則;
② 若數列是公差的等差數列,則;
③ 若數列是公比為的等比數列,則:
④ 若存在正整數,對任意,都有,則,是數列的最大項.
其中正確結論的序號是____(寫出所有正確結論的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義函數,(0,)為型函數,共中.
(1)若是型函數,求函數的值域;
(2)若是型函數,求函數極值點個數;
(3)若是型函數,在上有三點A、B、C橫坐標分別為、、,其中<<,試判斷直線AB的斜率與直線BC的斜率的大小并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點,已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在對人們的休閑方式的一次調查中,共調查了110人,其中女性50人,男性60人.女性中有30人主要的休閑方式是看電視,另外20人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外40人主要的休閑方式是運動.
(1)根據以上數據建立一個列聯表;
(2)判斷是否有99%的把握認為性別與休閑方式有關系.
下面臨界值表供參考:
0.10 | 0.05 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
(參考公式:)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,假命題的個數是( )
(1)若直線a在平面上,直線b不在平面上,則a,b是異面直線;
(2)若a,b是異面直線、則與a,b都垂直的直線有且只有一條
(3)若a,b是異面直線、若c,d與直線a,b都相交,則c,d也是異面直線
(4)設a,b是兩條直線,若平面,,則平面.
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com