直線l:y=x+1與橢圓C:ax2+y2=2(a>1)交于A、B兩點(diǎn),若OA⊥OB,則a=
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:聯(lián)立直線l:y=x+1與橢圓C:ax2+y2=2(a>1)得:(1+a)x2+2x-1=0,由此利用韋達(dá)定理結(jié)合已知條件能求出a=4.
解答: 解:聯(lián)立直線l:y=x+1與橢圓C:ax2+y2=2(a>1)得:(1+a)x2+2x-1=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-
2
1+a
,x1x2=-
1
1+a
,
∴y1y2=(x1+1)(x2+1)=x1x2+(x1+x2)+1=
a-2
a+1
,
∵OA⊥0B,
∴x1x2+y1y2=(-
1
1+a
)+
a-2
a+1
=0,
解得a=4.
故答案為:4.
點(diǎn)評:本題考查實(shí)數(shù)值的求法,解題時(shí)要認(rèn)真審題,注意韋達(dá)定理的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某省進(jìn)行高考改革,外語實(shí)行等級考試,其他學(xué)科分值如下表:
科目語文數(shù)學(xué)科目A科目B科目C科目D
分值180150120100100100
(1)有老師建議語文放在首場,數(shù)學(xué)與科目A不相鄰,按這位老師的建議安排考試,前三科總分不小于400的概率為多少?
(2)若前三場科目中要安排語文,求前三場考試總分ξ的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件:
x≥0
2x+y≤3
x+2y≥3
,則z=
x2
2
+y2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M和N中的元素個(gè)數(shù)相同,且M∪N={1,2,3,4},則M,N的不同構(gòu)成方式有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x≥2
3x-y≥1
y≥x+1
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最小值為2,則ab的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個(gè)命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②要得到函數(shù)y=sin(2x+
π
3
)的圖象,只要將y=sin2x的圖象向左平移
π
3
單位;
③若定義在(-∞,+∞)上的函數(shù)f(x)滿足f(x+1)=-f(x),則f(x)是周期函數(shù);
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xln|x|(x≠0)的大致圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i為虛數(shù)單位,z=
5i
1+2i
,則i的共軛復(fù)數(shù)為(  )
A、2-iB、2+i
C、-2-iD、-2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為1的菱形ABCD中,∠ABC=60°,將菱形沿對角線AC折起,使折起后BD=1,則二面角B-AC-D的余弦值為( 。
A、
1
3
B、
1
2
C、
2
2
3
D、
3
2

查看答案和解析>>

同步練習(xí)冊答案