若f(x)=-數(shù)學公式+blnx在(1,+∞)上是減函數(shù),則b的取值范圍是________.

b≤1
分析:求出原函數(shù)的導函數(shù),由f(x)=-+blnx在(1,+∞)上是減函數(shù),則其導函數(shù)在(1,+∞)上小于等于0恒成立,由此可以求得b的取值范圍.
解答:由f(x)=-+blnx,定義域為(0,+∞).

函數(shù)f(x)=-+blnx在(1,+∞)上是減函數(shù),
在x∈(1,+∞)上恒成立,
即b≤x2在x∈(1,+∞)上恒成立,因為x2>1,所以b≤1.
故答案為b≤1.
點評:本題主要考查函數(shù)的單調(diào)性與其導函數(shù)的正負之間的關系.屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x2+1,g(x)=2x,數(shù)列{an}滿足對于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.數(shù)列{bn}滿足bn=logana,設k,l∈N*,bk=
1
1+3l
,bl=
1
1+3k

(1)求證:數(shù)列{an}為等比數(shù)列,并指出公比;
(2)若k+l=9,求數(shù)列{bn}的通項公式.
(3)若k+l=M0(M0為常數(shù)),求數(shù)列{an}從第幾項起,后面的項都滿足an>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x(x2+3)
3x2+1
,數(shù)列{an}滿足對于一切n∈N*有an>1,且an+1=f(an).數(shù)列{bn}滿足,bn=
1
loga(ln
an-1
an+1
)
(a>0且a≠1)設k,l∈N*bk=
1
1+3l
,bl=
1
1+3k

(Ⅰ)求證:數(shù)列{ln
an-1
an+1
}
為等比數(shù)列,并指出公比;
(Ⅱ)若k+l=5,求數(shù)列{bn}的通項公式;
(Ⅲ)若k+l=M0(M0為常數(shù)),求數(shù)列{abn}從第幾項起,后面的項都滿足abn>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x2+1,g(x)=2x,數(shù)列{an}滿足對于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.數(shù)列{bn}滿足bn=logana,設k,l∈N*,bk=
1
1+3l
,bl=
1
1+3k

(1)求證:數(shù)列{an}為等比數(shù)列,并指出公比;
(2)若k+l=9,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=3x2+1,g(x)=2x,數(shù)列{an}滿足對于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.數(shù)列{bn}滿足bn=logana,設k,l∈N*bk=
1
1+3l
,bl=
1
1+3k

(1)求證:數(shù)列{an}為等比數(shù)列,并指出公比;
(2)若k+l=9,求數(shù)列{bn}的通項公式.
(3)若k+l=M0(M0為常數(shù)),求數(shù)列{an}從第幾項起,后面的項都滿足an>1.

查看答案和解析>>

同步練習冊答案