【題目】已知函數(shù).(其中為自然對數(shù)的底數(shù))

(1)若恒成立,求的最大值;

(2)設(shè),若存在唯一的零點(diǎn),且對滿足條件的不等式恒成立,求實(shí)數(shù)的取值集合.

【答案】(1);(2)

【解析】

1)就三種情況利用導(dǎo)數(shù)討論的單調(diào)性及其相應(yīng)的最小值后可得:時,成立,時,成立,對后一種情況構(gòu)建新函數(shù),利用導(dǎo)數(shù)可求的最大值即可.

2)求出,它是一個減函數(shù)且值域,故存在唯一的零點(diǎn),再由題設(shè)條件可以得到,用表示后可把不等式化為,構(gòu)建新函數(shù),就兩類情況利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性后可得實(shí)數(shù)的取值,注意后者的進(jìn)一步討論以的大小為分類標(biāo)準(zhǔn).

(1)

當(dāng)時,上單調(diào)遞增,取,

當(dāng)時,矛盾;

當(dāng)時,,

只要,即,此時;

當(dāng)時,令,

所以單調(diào)遞增,在單調(diào)遞減,

,

所以,即,

此時,

,

,,

當(dāng),上為增函數(shù);

當(dāng),,上為減函數(shù).

所以,所以,故的最大值為

(2)單調(diào)遞減且的值域?yàn)?/span>,

設(shè)的唯一的零點(diǎn)為,則,,

所以,

恒成立,則,

上恒成立.

,

,上為增函數(shù),注意到,知當(dāng)時,,矛盾;

當(dāng)時,,為增函數(shù),

,則當(dāng)時,,,為減函數(shù),

所以時,總有,矛盾;

,則當(dāng)時,,,為增函數(shù),

所以時,總有,矛盾;

所以,此時當(dāng)時,為增函數(shù),,

當(dāng)時,,為減函數(shù),而,

所以有唯一的零點(diǎn).

綜上,的取值集合為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體中,點(diǎn)關(guān)于平面的對稱點(diǎn)為,則與平面所成角的正切值為

A. B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù)),且曲線在點(diǎn)處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們在求高次方程或超越方程的近似解時常用二分法求解,在實(shí)際生活中還有三分法.比如借助天平鑒別假幣.有三枚形狀大小完全相同的硬幣,其中有一假幣(質(zhì)量較輕),把兩枚硬幣放在天平的兩端,若天平平衡,則剩余一枚為假幣,若天平不平衡,較輕的一端放的硬幣為假幣.現(xiàn)有 27 枚這樣的硬幣,其中有一枚是假幣(質(zhì)量較輕),如果只有一臺天平,則一定能找到這枚假幣所需要使用天平的最少次數(shù)為( )

A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為三個內(nèi)角的對邊,向量,.

(1)求角的大;

(2)若,且面積為,求邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為),M為該曲線上的任意一點(diǎn).

1)當(dāng)時,求M點(diǎn)的極坐標(biāo);

2)將射線OM繞原點(diǎn)O逆時針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅?zhǔn)悄媳背瘯r代的偉大科學(xué)家,公元五世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積恒相等,那么這兩個幾何體的體積一定相等.設(shè)A,B為兩個同高的幾何體,A,B的體積不相等,A,B在等高處的截面積不恒相等.根據(jù)祖暅原理可知,pq的( 。

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中為正實(shí)數(shù).

1)若的圖象總在函數(shù)的圖象的下方,求實(shí)數(shù)的取值范圍;

2)設(shè),證明:對任意,都有.

查看答案和解析>>

同步練習(xí)冊答案