已知銳角三角形ABC中,角A,B,C的對邊分別是a,b,c,tanB=
3
ac
a2+c2-b2
,則角B的大小為
 
考點:余弦定理
專題:計算題,解三角形
分析:根據(jù)余弦定理化簡題中的等式,算出sinB=
3
2
,結(jié)合B為銳角可得角B的大�。�
解答: 解:根據(jù)余弦定理,可得a2+c2-b2=2accosB,
結(jié)合tanB=
3
ac
a2+c2-b2
,得tanB=
3
ac
2accosB
=
3
2
cosB
,
∴sinB=
3
2
,結(jié)合B為銳角可得B=60°.
故答案為:60°
點評:本題給出銳角三角形ABC滿足的條件,求角B的大�。乜疾榱擞嘞叶ɡ怼⑼侨呛瘮�(shù)的基本關(guān)系等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y-29=0相切.求:
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線ax-y+5=0與圓相交于A,B兩點,求實數(shù)a的取值范圍;
(Ⅲ)在(2)的條件下,是否存在實數(shù)a,使得過點P(-2,4)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比為正數(shù),且a1=2,a3=a2+4.
(1)求{an}的通項公式;
(2)設(shè){bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an•bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1-2cosx
(x∈(0,2π)有意義,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x-1=0關(guān)于直線2x-y+3=0對稱的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(1,3),N(5,-2),若x軸上存在一點P,使|PM-PN|最大,則點P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,an+1=(-1)n(an+1),{an}的前n項和為Sn,則S2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點P(2,-3)作圓x2+2x+y2=24的弦AB,使得點P平分弦AB,則弦AB所在直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a2+b2=c2+
2
ba
,則∠C=( �。�
A、30°B、150°
C、45°D、135°

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�