已知函數(shù).
(Ⅰ)當時,恒成立,求實數(shù)的取值范圍;
(Ⅱ)若對一切,恒成立,求實數(shù)的取值范圍.

(1) (2)

解析試題分析:(1)本題為含參二次函數(shù)求最值,涉及到的問題是軸動而區(qū)間不動,所以要分三種情況,對稱軸在區(qū)間的左側(cè),在區(qū)間的右側(cè),在區(qū)間之間 .分別求出函數(shù)的最值從而解出a的取值范圍.(2)與(1)的區(qū)別是給定了a的范圍,解不等式,所以我們把轉(zhuǎn)化成關(guān)于a的不等式,利用給定a的范圍恒成立問題來解決x的取值范圍.
試題解析:(Ⅰ)當時,設(shè),分以下三種情況討論:
(1)當時,即時,上單調(diào)遞增,,
因此,無解.
(2)當時,即時,上單調(diào)遞減,
因此,解得.
(3)當時,即時, ,
因此,解得.
綜上所述,實數(shù)的取值范圍是.        6分
(Ⅱ) 由,令,
要使在區(qū)間恒成立,只需
解得.所以實數(shù)的取值范圍是.        12分
考點:二次函數(shù)求最值 含參不等式

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知a為給定的正實數(shù),m為實數(shù),函數(shù)f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上無極值點,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)),為常數(shù)),是實數(shù)集上的奇函數(shù).
(1)求證:;
(2)討論關(guān)于的方程:的根的個數(shù);
(3)設(shè),證明:為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù),其中
(I)若函數(shù)圖象恒過定點P,且點P關(guān)于直線的對稱點在的圖象上,求m的值;
(Ⅱ)當時,設(shè),討論的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè),曲線上是否存在兩點P、Q,使△OPQ(O為原點)是以O(shè)為直角頂點的直角三角形,且斜邊的中點在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且.
(1)判斷的奇偶性并說明理由;
(2)判斷在區(qū)間上的單調(diào)性,并證明你的結(jié)論;
(3)若對任意實數(shù),有成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;
(2)若函數(shù)上的最小值為3,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè),函數(shù).
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案