設(shè),函數(shù).
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

(Ⅰ);(Ⅱ)詳見解析.

解析試題分析:(Ⅰ)本小題首先需要對原函數(shù)求導(dǎo)得,然后代入;
(Ⅱ)本小題首先令,得,然后分析二根之間的關(guān)系,需要分類討論,按;;進(jìn)行.
試題解析:(Ⅰ)
 .                                           3分
(Ⅱ)令,得                         4分
函數(shù)定義域?yàn)镽,且對任意R,,
當(dāng),即時(shí),
的單調(diào)遞增區(qū)間是.          6分
當(dāng),即時(shí),



0




+
0
-
0
+


 

 

所以 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)若對一切,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)。
(1)如果,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)
(1)若,求最大值;
(2)已知正數(shù),滿足.求證:;
(3)已知,正數(shù)滿足.證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=,g(x)=ln(2ex)(其中e為自然對數(shù)的底數(shù))
(1)求y=f(x)-g(x)(x>0)的最小值;
(2)是否存在一次函數(shù)h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)對一切x>0恒成立;若存在,求出一次函數(shù)的表達(dá)式,若不存在,說明理由:
3)數(shù)列{}中,a1=1,=g()(n≥2),求證:<1且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),;
(1)求證:函數(shù)上單調(diào)遞增;
(2)設(shè),,若直線軸,求兩點(diǎn)間的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是函數(shù)的兩個(gè)極值點(diǎn),其中
(1)求的取值范圍;
(2)若,求的最大值.注:e是自然對數(shù)的底.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)有三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)求處切線方程;
(2)求證:函數(shù)在區(qū)間上單調(diào)遞減;
(3)若不等式對任意的都成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案