7.將函數(shù)y=sin(2x-$\frac{π}{6}}$)的圖象向左平移$\frac{π}{4}$個(gè)單位,所得函數(shù)圖象的解析式為y=f(x),則f(0)=$\frac{\sqrt{3}}{2}$.

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得f(x)的解析式,從而求得f(0)的值.

解答 解:將函數(shù)y=sin(2x-$\frac{π}{6}}$)的圖象向左平移$\frac{π}{4}$個(gè)單位,
所得函數(shù)圖象的解析式為y=f(x)=sin[2(x+$\frac{π}{4}$)-$\frac{π}{6}}$]=sin(2x+$\frac{π}{3}$),
故f(0)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,
故答案為:$\frac{{\sqrt{3}}}{2}$.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求函數(shù)的值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)m∈R,若函數(shù)y=ex-mx在區(qū)間[1,2]的最小值為4,則m的值為e-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知△ABC三邊長(zhǎng)成公差為2的等差數(shù)列,且最大角的正弦值為$\frac{{\sqrt{3}}}{2}$,則這個(gè)三角形的周長(zhǎng)是( 。
A.13B.15C.18D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)P是平行四邊形ABCD的對(duì)角線的交點(diǎn),O為任一點(diǎn),則$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=( 。
A.$4\overrightarrow{OP}$B.$3\overrightarrow{OP}$C.$2\overrightarrow{OP}$D.$\overrightarrow{OP}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(Ⅰ)求值:(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-(${\frac{49}{9}}$)0.5+(0.008)${\;}^{-\frac{2}{3}}}$×$\frac{2}{25}$;
(Ⅱ)已知二次函數(shù)f(x)滿足f(x+1)+f(x-1)=x2-4x,試求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知一個(gè)三棱錐的體積和表面積分別為V,S,若V=2,S=3,則該三棱錐內(nèi)切球的表面積是16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax+1.
(1)當(dāng)a=1時(shí),求f(x)在x=0處的切線方程;
(2)若f(x)在[0,1]上的最小值為$\frac{11}{12}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.《九章算術(shù)》是我國(guó)古代著名數(shù)學(xué)經(jīng)典.其中對(duì)勾股定理的論述比西方早一千多年,其中有這樣一個(gè)問(wèn)題:“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長(zhǎng)一尺.問(wèn)徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深一寸,鋸道長(zhǎng)一尺.問(wèn)這塊圓柱形木料的直徑是多少?長(zhǎng)為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦AB=1尺,弓形高CD=1寸,估算該木材鑲嵌在墻中的體積約為( 。  (注:1丈=10尺=100寸,π≈3.14,sin22.5°≈$\frac{5}{13}$)
A.600立方寸B.610立方寸C.620立方寸D.633立方寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)用定義證明函數(shù):f(x)=1-x在(-∞,+∞)為減函數(shù).
(2)已知函數(shù):f(x)=$\left\{\begin{array}{l}{x-1(x<1)}\\{\frac{2}{x}(x>2)}\end{array}\right.$,求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案