【題目】如圖,矩形中, , 邊上,且,將沿折到的位置,使得平面平面.

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】試題分析:(I)連接于點(diǎn),根據(jù)對(duì)應(yīng)邊成比例可證得兩個(gè)直角三角形相似,由此證得,而,故平面,所以.(II)由(I)知平面,以為原點(diǎn)聯(lián)立空間直角坐標(biāo)系,利用平面和平面的方向量,計(jì)算兩個(gè)半平面所成角的余弦值.

試題解析:

(Ⅰ)連接于點(diǎn),依題意得,所以 ,

所以,所以,所以,

, ,又, ,平面.

所以平面.

平面,所以.

(Ⅱ)因?yàn)槠矫?/span>平面,

由(Ⅰ)知, 平面,

為原點(diǎn),建立空間直角坐標(biāo)系如圖所示.

中,易得, , ,

所以 ,

,

設(shè)平面的法向量,則,即,解得

,得,

顯然平面的一個(gè)法向量為.

所以 ,所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,

已知某圓的極坐標(biāo)方程為:

(1)將極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)若點(diǎn) 在該圓上,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ,則對(duì)任意,函數(shù)的零點(diǎn)個(gè)數(shù)至多有( )

A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 恒過定點(diǎn),圓經(jīng)過點(diǎn)和點(diǎn),且圓心在直線上.

(1)求定點(diǎn)的坐標(biāo);

(2)求圓的方程;

(3)已知點(diǎn)為圓直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn),問:在軸上是否存在一點(diǎn),使得為直角三角形,若存在,求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線 ,曲線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.

(Ⅰ)求曲線, 的極坐標(biāo)方程;

(Ⅱ)曲線 為參數(shù), , )分別交, , 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線 ,曲線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.

(Ⅰ)求曲線, 的極坐標(biāo)方程;

(Ⅱ)曲線 為參數(shù), , )分別交, , 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量 = = ,若k +3 平行,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.己知asinA+csinC﹣ asinC=bsinB, (Ⅰ)求B;
(Ⅱ)若A=75°,b=2,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1,討論函數(shù)的單調(diào)性;

2曲線與直線交于,兩點(diǎn),其中,若直線斜率為,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案