【題目】已知直線: 恒過定點,圓經(jīng)過點和點,且圓心在直線上.
(1)求定點的坐標;
(2)求圓的方程;
(3)已知點為圓直徑的一個端點,若另一個端點為點,問:在軸上是否存在一點,使得為直角三角形,若存在,求出的值,若不存在,請說明理由.
【答案】(1);(2);(3).
【解析】試題分析:(1)直線過定點問題,應將直線: 的方程中含 的項合并,變?yōu)?/span>,解方程組即可求定點坐標;(2)方法一:設圓的一般方程為,其圓心為 ,由條件可得關于 三元方程組,解方程組可求解;方法二:設圓的方程為標準方程。(3)圓心C為 的中點,由中點坐標公式求點 的坐標。點M到圓心C距離大于半徑,所以點M在圓C外。故 或 為直角,兩鄰邊垂直,斜率乘積為-1,可求m的值。
試題解析:(1)由得, ,
令,得,即定點的坐標為.
(2)設圓的方程為,
由條件得,解得.
所以圓的方程為.
(3)圓的標準方程為, ,
設點關于圓心的對稱點為,則有,
解得, ,故點的坐標為.
因為在圓外,所以點不能作為直角三角形的頂點,
若點為直角三角形的頂點,則有, ,
若點是直角三角形的頂點,則有, ,
綜上, 或.
所以,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知是等差數(shù)列,滿足,數(shù)列滿足,且為等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(m,cos2x), =(sin2x,n),設函數(shù)f(x)= ,且y=f(x)的圖象過點( , )和點( ,﹣2). (Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于數(shù)列{an},定義 為{an}的“優(yōu)值”,現(xiàn)在已知某數(shù)列{an}的“優(yōu)值” ,記數(shù)列{an﹣kn}的前n項和為Sn , 若Sn≤S5對任意的n∈N+恒成立,則實數(shù)k的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當時, ,則對任意,函數(shù)的零點個數(shù)至多有( )
A. 3個 B. 4個 C. 6個 D. 9個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)遞增區(qū)間和對稱中心坐標;
(3)將f(x)的圖象向左平移 個單位,再講橫坐標伸長到原來的2倍,縱坐標不變,最后將圖象向上平移1個單位,得到函數(shù)g(x)的圖象,求函數(shù)y=g(x)在 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線: 恒過定點,圓經(jīng)過點和點,且圓心在直線上.
(1)求定點的坐標;
(2)求圓的方程;
(3)已知點為圓直徑的一個端點,若另一個端點為點,問:在軸上是否存在一點,使得為直角三角形,若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線: ,曲線: (為參數(shù)),以坐標原點為極點, 軸正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線, 的極坐標方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點,當取何值時, 取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4;坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點, 軸正半軸為極軸的極坐標中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程.
(Ⅱ)求曲線上的點到直線的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com