在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,cos
A+C
2
=
3
3

(Ⅰ)求cosB的值;
(Ⅱ)若a+c=2
6
,b=2
2
,求△ABC的面積.
考點:正弦定理,余弦定理
專題:解三角形
分析:(Ⅰ)已知等式左邊利用誘導(dǎo)公式化簡,再利用二倍角的余弦函數(shù)公式求出cosB的值即可;
(Ⅱ)利用余弦定理列出關(guān)系式,再利用完全平方公式變形后,將a+c的值代入求出ac的值,再由sinB的值,利用三角形面積公式即可求出三角形ABC面積.
解答: 解:(Ⅰ)∵cos
A+C
2
=
3
3
,
∴cos
π-B
2
=sin
B
2
=
3
3

則cosB=1-2sin2
B
2
=
1
3
;
(Ⅱ)∵b=2
2
,cosB=
1
3
,即sinB=
1-cos2B
=
2
2
3
,
∴由余弦定理得:b2=a2+c2-2accosB,即9=a2+c2-
2
3
ac=(a+c)2-
8
3
ac,
將a+c=2
6
代入得:ac=6,
則S△ABC=
1
2
acsinB=
1
2
×6×
2
2
3
=2
2
點評:此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱柱ABC-A1B1C1的側(cè)棱與底面邊長都等于a,若A1在底面ABC內(nèi)的射影為△ABC的中心,則AB1與底面ABC所成的角的余弦值等于( 。
A、
2
3
B、
2
6
C、
7
3
D、
14
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形的三個頂點是A(4,0),B(6,6),C(0,2).
(1)求AB邊上的高所在直線的方程;
(2)求AC邊上的中線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
2
0
0
2
,記繞原點逆時針旋轉(zhuǎn)
π
4
的變換所對應(yīng)的矩陣為N.
(Ⅰ)求矩陣N;    
(Ⅱ)若曲線C:xy=1在矩陣MN對應(yīng)變換作用下得到曲線C′,求曲線C′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an=(2n-1)•2n-1,求其前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)和圓O:x2+y2=b2
(1)若橢圓上存在一點P,過點P引圓O的兩條切線,切點分別為A,B,使∠APB=90°,求橢圓的離心率e的取值范圍;
(2)當(dāng)橢圓的離心率e取第(1)問中的最小值,且橢圓的一條準(zhǔn)線方程為x=2時,作一直線l與圓O相切,且交橢圓于M,N兩點,A1,A2是x軸上關(guān)于原點對稱的兩點,B1,B2是y軸上關(guān)于原點對稱的兩點,若
A1M
A2M
+
B1N
B2N
=0,求|A1B1|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別求出符合下列要求的不同排法的種數(shù)
(1)6名學(xué)生排3排,前排1人,中排2人,后排3人;
(2)6名學(xué)生排成一排,甲不在排頭也不在排尾;
(3)從6名運動員中選出4人參加4×100米接力賽,甲不跑第一棒,乙不跑第四棒;
(4)6人排成一排,甲、乙必須相鄰;
(5)6人排成一排,甲、乙不相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=Asin(ωx+φ)(ω>0,|φ|<
π
2
)在同一個周期內(nèi),當(dāng)x=
π
4
時y取最大值2,當(dāng)x=
12
時,y取最小值-2.
(1)求函數(shù)的解析式y(tǒng)=f(x).
(2)x∈[0,
π
3
],求f(x)的值域且畫出f(x)在[0,
π
3
]上的簡圖.
(3)求函數(shù)y=
1
3
sin(3x-
π
4
)+2對稱軸方程、對稱中心坐標(biāo),敘述函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到函數(shù)y=
1
3
sin(3x-
π
4
)+2的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,直線l的方程為y=-1,過點A(0,1)且與直線l相切的動圓的圓心為點M,記點M得軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若直線y=kx+1與曲線E相交于B,C兩點,過B點作直線l的垂線,垂足為D,O為坐標(biāo)原點,判斷D,O,C三點是否共線?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案