【題目】在平面直角坐標系中,以原點為極點,x軸的非負半軸為極軸,并在兩坐標系中取相同的長度單位,若直線l的極坐標方程是ρsin(θ+ )=2 ,且點P是曲線C: (θ為參數(shù))上的一個動點.
(Ⅰ)將直線l的方程化為直角坐標方程;
(Ⅱ)求點P到直線l的距離的最大值與最小值.

【答案】解:(Ⅰ)∵直線l的極坐標方程是ρsin(θ+ )=2 ,

,

∴ρsinθ+ρcosθ=4,

由ρsinθ=y,ρcosθ=x,得x+y=4.

∴直線l的直角坐標方程為x+y=4.

(Ⅱ)∵點P是曲線C: (θ為參數(shù))上的一個動點,

∴P( ),

點P到直線l的距離d= = ,

∴點P到直線l的距離的最大值dmax= =3 ,

點P到直線l的距離的最小值dmin= =


【解析】(Ⅰ)直線l的極坐標方程轉(zhuǎn)化為ρsinθ+ρcosθ=4,由ρsinθ=y,ρcosθ=x,能求出直線l的直角坐標方程.(Ⅱ)由題意P( ),從而點P到直線l的距離d= = ,由此能求出點P到直線l的距離的最大值與最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】點A,B,C,D在同一個球的球面上,AB=BC= ,∠ABC=90°,若四面體ABCD體積的最大值為3,則這個球的表面積為(
A.2π
B.4π
C.8π
D.16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)的圖象上存在不同兩點M、N關(guān)于原點對稱,則稱點對[M,N]是函數(shù)y=f(x)的一對“和諧點對”(點對[M,N]與[N,M]看作同一對“和諧點對”).已知函數(shù)f(x)= 則此函數(shù)的“和諧點對”有(
A.0對
B.1對
C.2對
D.4對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓x2+y2﹣2x﹣8y+13=0的圓心到直線ax+y﹣1=0的距離為1,則a=(
A.﹣
B.﹣
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,已知(b﹣2a)cosC+ccosB=0
(1)求角C;
(2)若 ,求邊長a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四個函數(shù):①y=﹣x,②y=﹣ ,③y=x3 , ④y=x ,從中任選2個,則事件“所選2個函數(shù)的圖象有且僅有一個公共點”的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓Γ: =1,A為Γ的上頂點,P為Γ上異于上、下頂點的動點,M為x正半軸上的動點.
(1)若P在第一象限,且|OP|= ,求P的坐標;
(2)設(shè)P( ),若以A、P、M為頂點的三角形是直角三角形,求M的橫坐標;
(3)若|MA|=|MP|,直線AQ與Γ交于另一點C,且 , ,求直線AQ的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 .
(1)若函數(shù) 的圖象在點 處的切線平行于直線 ,求 的值;
(2)討論函數(shù) 在定義域上的單調(diào)性;
(3)若函數(shù) 上的最小值為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓M恒過點(0,1),且與直線y=﹣1相切.
(1)求圓心M的軌跡方程;
(2)動直線l過點P(0,﹣2),且與點M的軌跡交于A、B兩點,點C與點B關(guān)于y軸對稱,求證:直線AC恒過定點.

查看答案和解析>>

同步練習冊答案