【題目】點A,B,C,D在同一個球的球面上,AB=BC= ,∠ABC=90°,若四面體ABCD體積的最大值為3,則這個球的表面積為( )
A.2π
B.4π
C.8π
D.16π
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項都是正數,a1=1,an+12=an2+ (n∈N*)
(1)求證: ≤an<2(n≥2)
(2)求證:12(a2﹣a1)+22(a3﹣a2)+…+n2(an+1﹣an)> ﹣ (n∈N*)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)= e3x+me2x+(2m+1)ex+1有兩個極值點,則實數m的取值范圍是( )
A.(﹣ ,1﹣ )
B.[﹣ ,1﹣ ]
C.(﹣∞,1﹣ )
D.(﹣∞,1﹣ )∪(1+ ,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知復數z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且 .
(1)若復數z1對應的點M(m,n)在曲線 上運動,求復數z所對應的點P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點按向量 方向平移 個單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點A(異于頂點)作其切線,交y軸于點B,求證:以線段AB為直徑的圓恒過一定點,并求出此定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,設點M(x0 , y0)是橢圓C: +y2=1上一點,從原點O向圓M:(x﹣x0)2+(y﹣y0)2=r2作兩條切線分別與橢圓C交于點P,Q.直線OP,OQ的斜率分別記為k1 , k2
(1)若圓M與x軸相切于橢圓C的右焦點,求圓M的方程;
(2)若r= ,①求證:k1k2=﹣ ;②求OPOQ的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A,B分別為橢圓E: 的左,右頂點,點P(0,﹣2),直線BP交E于點Q, 且△ABP是等腰直角三角形.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設過點P的動直線l與E相交于M,N兩點,當坐標原點O位于以MN為直徑的圓外時,求直線l斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點,x軸的非負半軸為極軸,并在兩坐標系中取相同的長度單位,若直線l的極坐標方程是ρsin(θ+ )=2 ,且點P是曲線C: (θ為參數)上的一個動點.
(Ⅰ)將直線l的方程化為直角坐標方程;
(Ⅱ)求點P到直線l的距離的最大值與最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com