【題目】已知點(diǎn)A,B分別為橢圓E: 的左,右頂點(diǎn),點(diǎn)P(0,﹣2),直線BP交E于點(diǎn)Q, 且△ABP是等腰直角三角形.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)過點(diǎn)P的動(dòng)直線l與E相交于M,N兩點(diǎn),當(dāng)坐標(biāo)原點(diǎn)O位于以MN為直徑的圓外時(shí),求直線l斜率的取值范圍.

【答案】解:(Ⅰ)由題意知:△ABP是等腰直角三角形,a=2,B(2,0),

設(shè)Q(x0,y0),由 ,則

代入橢圓方程,解得b2=1,

∴橢圓方程為

(Ⅱ)由題意可知,直線l的斜率存在,方程為y=kx﹣2,設(shè)M(x1,y1),N(x2,y2),

,整理得:(1+4k2)x2﹣16kx+12=0,

由韋達(dá)定理可知:x1+x2= ,x1x2= ,

由直線l與E有兩個(gè)不同的交點(diǎn),則△>0,

即(﹣16k)2﹣4×12×(1+4k2)>0,解得:k2 ,…①

由坐標(biāo)原點(diǎn)O位于以MN為直徑的圓外,則 ,即x1x2+y1y2>0,

則x1x2+y1y2=x1x2+(kx1﹣2)(kx2﹣2)

=(1+k2)x1x2﹣2k×(x1+x2)+4

=(1+k2 ﹣2k× +4>0,

解得:k2<4,…②

綜合①②可知: <k2<4,解得 <k<2或﹣2<k<﹣ ,

直線l斜率的取值范圍(﹣2,﹣ )∪( ,2).


【解析】(Ⅰ)由題意可知:由 ,求得Q點(diǎn)坐標(biāo),即可求得橢圓E的方程;(Ⅱ)設(shè)直線y=kx﹣2,代入橢圓方程,由韋達(dá)定理,由△>0,由坐標(biāo)原點(diǎn)O位于以MN為直徑的圓外,則 ,由向量數(shù)量積的坐標(biāo)公式,即可求得直線l斜率的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的內(nèi)角A滿足f(A)=2,而 ,求邊BC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知向量 平行.
(1)求 的值;
(2)若bcosC+ccosB=1,△ABC周長為5,求b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為總信號源點(diǎn),A,B,C是三個(gè)居民區(qū),已知A,B都在O的正東方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5 km.
(1)求居民區(qū)A與C的距離;
(2)現(xiàn)要經(jīng)過點(diǎn)O鋪設(shè)一條總光纜直線EF(E在直線OA的上方),并從A,B,C分別鋪設(shè)三條最短分光纜連接到總光纜EF.假設(shè)鋪設(shè)每條分光纜的費(fèi)用與其長度的平方成正比,比例系數(shù)為m(m為常數(shù)).設(shè)∠AOE=θ(0≤θ<π),鋪設(shè)三條分光纜的總費(fèi)用為w(元). ①求w關(guān)于θ的函數(shù)表達(dá)式;
②求w的最小值及此時(shí)tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A,B,C,D在同一個(gè)球的球面上,AB=BC= ,∠ABC=90°,若四面體ABCD體積的最大值為3,則這個(gè)球的表面積為(
A.2π
B.4π
C.8π
D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD的三視圖如圖所示,則四棱錐P﹣ABCD的四個(gè)側(cè)面中面積最大的是(
A.3
B.2
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn),PA=PD=AD=2
(1)點(diǎn)M在線段PC上,PM=tPC,試確定t的值,使PA∥平面MQB;
(2)在(1)的條件下,若平面PAD⊥平面ABCD,求二面角M﹣BQ﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓M: =1(a>b>0)的離心率為 ,左焦點(diǎn)F1到直線 的距離為3,圓N的方程為(x﹣c)2+y2=a2+c2(c為半焦距),直線l:y=kx+m(k>0)與橢圓M和圓N均只有一個(gè)公共點(diǎn),分別設(shè)為A,B.
(1)求橢圓M的方程和直線l的方程;
(2)在圓N上是否存在點(diǎn)P,使 ,若存在,求出P點(diǎn)坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四個(gè)函數(shù):①y=﹣x,②y=﹣ ,③y=x3 , ④y=x ,從中任選2個(gè),則事件“所選2個(gè)函數(shù)的圖象有且僅有一個(gè)公共點(diǎn)”的概率為

查看答案和解析>>

同步練習(xí)冊答案