【題目】某學校研究性學習小組對該校高三學生視力情況進行調(diào)查,在高三的全體1000名學生中隨機抽取了100名學生的體檢表,并得到如圖的頻率分布直方圖.

(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);

(2)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對年級名次在1~50名和951~1000名的學生進行了調(diào)查,得到右表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關系?

附:

【答案】(1);(2)在犯錯誤的概率不超過的前提下認為視力與學習成績有關系.

【解析】

試題分析:(1)可求前三組的頻率:,后四組概率和為,由后四組的頻數(shù)成等差數(shù)列可知第六組概率為,則視力在以下的概率為,人數(shù)為;(2)將數(shù)據(jù)代入公式可求得的值,即可得到結(jié)論.

試題解析:(1)設各組的頻率為,

由圖可知,第一組有3人,第二組7人,第三組27人,

因為后四組的頻數(shù)成等差數(shù)列,

所以后四組頻數(shù)依次為

所以視力在5.0以下的頻率為3+7+27+24+21=82

故全年級視力在5.0以下的人數(shù)約為

(2)

因此在犯錯誤的概率不超過0.05的前提下認為視力與學習成績有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)100個紅包,每個紅包金額為x元,.已知在每輪游戲中所產(chǎn)生的100個紅包金額的頻率分布直方圖如圖所示.

(1)求a的值,并根據(jù)頻率分布直方圖,估計紅包金額的眾數(shù);

(2)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在[1,2)的紅包個數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某射擊運動員進行射擊訓練,前三次射擊在靶上的著彈點剛好是邊長為的等邊三角形的三個頂點.

(Ⅰ)第四次射擊時,該運動員瞄準區(qū)域射擊(不會打到外),則此次射擊的著彈點距的距離都超過的概率為多少?(彈孔大小忽略不計)

(Ⅱ) 該運動員前三次射擊的成績(環(huán)數(shù))都在區(qū)間內(nèi),調(diào)整一下后,又連打三槍,其成績(環(huán)數(shù))都在區(qū)間內(nèi).現(xiàn)從這次射擊成績中隨機抽取兩次射擊的成績(記為)進行技術分析.求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地草場出現(xiàn)火災,火勢正以每分鐘的速度順風蔓延,消防站接到警報立即派消防隊員前去,在火災發(fā)生后分鐘到達救火現(xiàn)場,已知消防隊員在現(xiàn)場平均每人每分鐘滅火,所消耗的滅火材料、勞務津貼等費用為每人每分鐘元,另附加每次救火所耗損的車輛、器械和裝備等費用平均每人100元,而燒毀一平方米森林損失費為30元.

1)設派名消防隊員前去救火,用分鐘將火撲滅,試建立的函數(shù)關系式;

2)問應該派多少消防隊員前去救火,才能使總損失最少?(注:總損失費=滅火勞務津貼+車輛、器械裝備費+森林損失費)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表.

1

2 4

3 5 7

6 8 10 12

9 11 13 15 17

14 16 18 20 22 24

是位于這個三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個數(shù),如.若,則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知底角為的等腰梯形,底邊長為7,腰長為,當一條垂直于底邊垂足為的直線從左至右向移動(與梯形有公共點)時,直線把梯形分成兩部分,令,記左邊部分的面積為

1)試求1,3時的值;

2)寫出關于的函數(shù)關系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗》國家標準,新標準規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過反復試驗,喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如下:

該函數(shù)模型如下:

根據(jù)上述條件,回答以下問題:

(1)試計算喝1瓶啤酒后多少小時血液中的酒精含量達到最大值?最大值是多少?

(2)試計算喝1瓶啤酒后多少小時后才可以駕車?(時間以整小時計算)

(參數(shù)數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面,為正方形的對角線,給出下列命題:

為平面PAD的法向量;

為平面PAC的法向量;

為直線AB的方向向量;

④直線BC的方向向量一定是平面PAB的法向量.

其中正確命題的序號是______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)=[]

若曲線y= fx在點(1,處的切線與軸平行,a

x=2處取得極小值,a的取值范圍

查看答案和解析>>

同步練習冊答案