14.拋物線$y=\frac{1}{4}{x^2}$的焦點(diǎn)坐標(biāo)是( 。
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

分析 根據(jù)題意,將拋物線的方程變形可得其標(biāo)準(zhǔn)方程為x2=4y,分析可得其焦點(diǎn)在y軸正半軸上,且p=2,由拋物線的焦點(diǎn)坐標(biāo)公式計(jì)算可得答案.

解答 解:根據(jù)題意,拋物線的方程為:$y=\frac{1}{4}{x^2}$,變形可得x2=4y,
其焦點(diǎn)在y軸正半軸上,且p=2,
則其焦點(diǎn)坐標(biāo)為:(0,1);
故選:C.

點(diǎn)評(píng) 本題考查拋物線的幾何性質(zhì),注意先將拋物線的方程變形為標(biāo)準(zhǔn)方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.向量$\overrightarrow{a}$=(2-x,-1,y),$\overrightarrow$=(-1,x,-1).若$\overrightarrow{a}$∥$\overrightarrow$,則x+y=( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=|x-a|+m|x+a|(0<m<1,m,a∈R),若對(duì)于任意的實(shí)數(shù)x不等式f(x)≥2恒成立時(shí),實(shí)數(shù)a的取值范圍是{a|a≤-5或a≥5},則所有滿足條件的m的組成的集合是{$\frac{1}{5}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x,則f(-1)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某市家庭煤氣的使用量x(m3)和煤氣費(fèi)f(x)(元) 滿足關(guān)系f(x)=$\left\{\begin{array}{l}{C,0<x≤A}\\{C+B(x-A),x>A}\end{array}\right.$,已知某家庭今年前三個(gè)月的煤氣費(fèi)如表:
月份用氣量煤氣費(fèi)
一月份4m34 元
二月份25m314 元
三月份35m319 元
若四月份該家庭使用了20m3的煤氣,則其煤氣費(fèi)為( 。┰
A.10.5B.10C.11.5D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={0,1,2},若A∩∁ZB=∅(Z是整數(shù)集合),則集合B可以為(  )
A.{x|x=2a,a∈A}B.{x|x=2a,a∈A}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sinx•cosx-$\sqrt{3}{cos^2}$x.
(1)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象上每一點(diǎn)的橫坐標(biāo)伸長到原來的兩倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,若方程g(x)+$\frac{{\sqrt{3}+m}}{2}$=0在x∈[0,π]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}滿足an+1=$\frac{1}{{1-{a_n}}}$,若a1=$\frac{1}{2}$,則a2017=( 。
A.$\frac{1}{2}$B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且當(dāng)x∈[1,2]時(shí),f(x)=lnx-x+1,若函數(shù)g(x)=f(x)+mx有7個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.$(\frac{1-ln2}{8},\frac{1-ln2}{6})∪(\frac{ln2-1}{6},\frac{ln2-1}{8})$B.$(\frac{ln2-1}{6},\frac{ln2-1}{8})$
C.$(\frac{1-ln2}{8},\frac{1-ln2}{6})$D.$(\frac{1-ln2}{8},\frac{ln2-1}{6})$

查看答案和解析>>

同步練習(xí)冊答案