【題目】如圖在正方體中中,
(1)求異面直線所成的角;
(2)求直線D1B與底面所成角的正弦值;
(3)求二面角大小的正切值.
【答案】(1) ; (2); (3).
【解析】試題分析:(1)連接AC,AD1,∠AD1C即為BC1與CD1所成角;
(2)DD1⊥平面ABCD,∠D1DB為直線D1B與平面ABCD所成的角;
(3)連接BD交AC于O,則DO⊥AC,∠D1OD為二面角D1﹣AC﹣D的平面角.
試題解析:
(1)連接AC,AD1,如圖所示:
∵BC1∥AD1,
∴∠AD1C即為BC1與CD1所成角,
∵△AD1C為等邊三角形,
∴∠AD1C=60°,
故異面直線BC1與CD1所成的角為60°;
(2)∵DD1⊥平面ABCD,
∴∠D1DB為直線D1B與平面ABCD所成的角,
在Rt△D1DB中,sin∠D1DB==
∴直線D1B與平面ABCD所成角的正弦值為;
(3)連接BD交AC于O,則DO⊥AC,
根據(jù)正方體的性質(zhì),D1D⊥面AC,
∴D1D⊥AC,D1D∩DO=D,
∴AC⊥面D1OD,∴AC⊥D1O,
∴∠D1OD為二面角D1﹣AC﹣D的平面角.
設(shè)正方體棱長為1,
在直角三角形D1OD中,DO=,DD1=1,
∴tan∠D1OD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,曲線與在原點(diǎn)處有公共切線.
(I)若為函數(shù)的極大值點(diǎn),求的單調(diào)區(qū)間(用表示);
(II)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在,使得(是自然對數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊的一角開辟為水果園種植桃樹,已知角為,的長度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.
(1)若圍墻總 長度為米,如何圍可使得三角形地塊的面積最大?
(2)已知段圍墻高米,段圍墻高米,造價均為每平方米元.若圍圍墻用了元,問如何圍可使竹籬笆用料最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的偶函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷并證明函數(shù)在上單調(diào)性;
(3)求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,點(diǎn)是棱的中點(diǎn),,平面平面.
(Ⅰ)求證://平面;
(Ⅱ)求證:平面;
(Ⅲ) 設(shè),試判斷平面⊥平面能否成立;若成立,寫出的一個值(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是
A. 若直線與平面平行,則與平面內(nèi)的任意一條直線都沒有公共點(diǎn);
B. 若直線與平面平行,則與平面內(nèi)的任意一條直線都平行;
C. 若直線上有無數(shù)個點(diǎn)不在平面 內(nèi),則;
D. 如果兩條平行線中的一條與一個平面平行,那么另一條也與這個平面平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的三內(nèi)角A,B,C的對邊分別是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.
(Ⅰ)求角A的大;
(Ⅱ)若,,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com