【題目】已知橢圓的離心率為,焦點(diǎn)分別為,點(diǎn)是橢圓上的點(diǎn),面積的最大值是.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ) (Ⅱ)見(jiàn)解析
【解析】
(Ⅰ)由題意得到的方程組,求出的值,即可得出橢圓方程;
(Ⅱ)當(dāng)直線的斜率不存在時(shí),易求出四邊形的面積;當(dāng)直線的斜率存在時(shí),設(shè)直線方程是,聯(lián)立直線與橢圓方程,結(jié)合判別式和韋達(dá)定理,可表示出弦長(zhǎng),再求出點(diǎn)到直線的距離,根據(jù)和點(diǎn)在曲線上,求出的關(guān)系式,
最后根據(jù),即可得出結(jié)果.
解:(Ⅰ)由解得 得橢圓的方程為.
(Ⅱ)當(dāng)直線的斜率不存在時(shí),直線的方程為或,此時(shí)四邊形的面積為.
當(dāng)直線的斜率存在時(shí),設(shè)直線方程是,聯(lián)立橢圓方程
,
點(diǎn)到直線的距離是
由得
因?yàn)辄c(diǎn)在曲線上,所以有整理得
由題意四邊形為平行四邊形,所以四邊形的面積為
由得, 故四邊形的面積是定值,其定值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅?zhǔn)俏覈?guó)古代的偉大科學(xué)家,他在5世紀(jì)末提出祖暅:“冪勢(shì)即同,則積不容異”,意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意一個(gè)平面所截,若截面面積都相等,則這兩個(gè)幾何體的體積相等. 祖暅原理常用來(lái)由已知幾何體的體積推導(dǎo)未知幾何體的體積,例如由圓錐和圓柱的的體積推導(dǎo)半球體的體積,其示意圖如圖所示,其中圖(1)是一個(gè)半徑為R的半球體,圖(2)是從圓柱中挖去一個(gè)圓錐所得到的幾何體. (圓柱和圓錐的底面半徑和高均為R)
利用類似的方法,可以計(jì)算拋物體的體積:在x-O-y坐標(biāo)系中,設(shè)拋物線C的方程為y=1-x2 (-1x1),將曲線C圍繞y軸旋轉(zhuǎn),得到的旋轉(zhuǎn)體稱為拋物體. 利用祖暅原理可計(jì)算得該拋物體的體積為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第35屆牡丹花會(huì)期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場(chǎng)所是王城公園和牡丹公園.
(1)若學(xué)生甲和乙必須在同一個(gè)公園,且甲和丙不能在同一個(gè)公園,則共有多少種不同的分配方案?
(2)每名學(xué)生都被隨機(jī)分配到其中的一個(gè)公園,設(shè)分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線與直線交于P點(diǎn).
(Ⅰ)當(dāng)直線過(guò)P點(diǎn),且與直線平行時(shí),求直線的方程.
(Ⅱ)當(dāng)直線過(guò)P點(diǎn),且原點(diǎn)O到直線的距離為1時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在上存在極大值點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)求證:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年1月31日晚上月全食的過(guò)程分為初虧、食既、食甚、生光、復(fù)圓五個(gè)階段,月食的初虧發(fā)生在19時(shí)48分,20時(shí)51分食既,食甚時(shí)刻為21時(shí)31分,22時(shí)08分生光,直至23時(shí)12分復(fù)圓全食伴隨有藍(lán)月亮和紅月亮,全食階段的“紅月亮”將在食甚時(shí)刻開(kāi)始,生光時(shí)刻結(jié)束,一市民準(zhǔn)備在19:55至21:56之間的某個(gè)時(shí)刻欣賞月全食,則他等待“紅月亮”的時(shí)間不超過(guò)30分鐘的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為且橢圓上存在一點(diǎn),滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知分別是橢圓的左、右頂點(diǎn),過(guò)的直線交橢圓于兩點(diǎn),記直線的交點(diǎn)為,是否存在一條定直線,使點(diǎn)恒在直線上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若在上至少存在一個(gè),滿足,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com