在如圖所示的幾何體中,四邊形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,點A,B,E,A1在一個平面內(nèi),AB=BC=CC1=2,AC=2.

證明:(1)A1E∥AB.
(2)平面CC1FB⊥平面AA1EB.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形, 平面,,,于點

(1) 求證:
(2) 求直線與平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在空間四邊形ABCD中,已知AC⊥BD,AD⊥BC,求證:AB⊥CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知點M、N是正方體ABCD-A1B1C1D1的兩棱A1A與A1B1的中點,P是正方形ABCD的中心,

(1)求證:平面.
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

直三棱柱ABC-A1B1C1的底面為等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分別是BC,AA1的中點.

求(1)異面直線EF和A1B所成的角.
(2)三棱錐A-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四棱錐PABCD的底面為直角梯形,ABCD,∠DAB=90°,PA⊥底面ABCD,且PAADDCAB=1,MPB的中點.

(1)求證:AMCM;
(2)若NPC的中點,求證:DN∥平面AMC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在幾何體ABCDE中,ABAD=2,ABAD,AE⊥平面ABD,M為線段BD的中點,MCAE,且AEMC.

(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點,求證:平面AMN∥平面BEC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐PABCD中,底面ABCD是邊長為1的正方形,且PA⊥平面ABCD.
 
(1)求證:PCBD
(2)過直線BD且垂直于直線PC的平面交PC于點E,且三棱錐EBCD的體積取到最大值.
①求此時四棱錐EABCD的高;
②求二面角ADEB的正弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐中,底面是正方形,交于點底面,的中點.

(1)求證:平面;
(2)若,在線段上是否存在點,使平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案