【題目】判斷下列命題的真假.
(1)過(guò)一條直線的平面有無(wú)數(shù)多個(gè);
(2)如果兩個(gè)平面有兩個(gè)公共點(diǎn),那么它們就有無(wú)數(shù)多個(gè)公共點(diǎn),并且這些公共點(diǎn)都在直線上;
(3)兩個(gè)平面的公共點(diǎn)組成的集合,可能是一條線段;
(4)兩個(gè)相交平面可能存在不在一條直線上的3個(gè)公共點(diǎn).
【答案】(1)真命題;(2)真命題;(3)假命題;(4)假命題.
【解析】
(1)根據(jù)基本事實(shí)1“過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面”的推論可得命題是真命題;
(2)根據(jù)基本事實(shí)3“如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線”可得命題是真命題;
(3)根據(jù)基本事實(shí)3“如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線”可得命題是假命題;
(4)根據(jù)基本事實(shí)3“如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線”可得命題是假命題.
解:(1)由基本事實(shí)1“過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面”的推論可知,兩條平行直線或者兩條相交直線可以確定一個(gè)平面,結(jié)合一扇門旋轉(zhuǎn)時(shí)所在的不同平面都經(jīng)過(guò)軸可知,命題“過(guò)一條直線的平面有無(wú)數(shù)多個(gè)”是真命題;
(2)根據(jù)基本事實(shí)3“如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線”可得命題“如果兩個(gè)平面有兩個(gè)公共點(diǎn),那么它們就有無(wú)數(shù)多個(gè)公共點(diǎn),并且這些公共點(diǎn)都在直線上”是真命題;
(3)根據(jù)基本事實(shí)3“如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線”可得兩個(gè)平面的公共點(diǎn)組成的集合是一條直線,從而命題“兩個(gè)平面的公共點(diǎn)組成的集合,可能是一條線段”是假命題;
(4)根據(jù)基本事實(shí)3“如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線”可得兩個(gè)平面若相交,它們的公共點(diǎn)必在一條直線上,從而命題“兩個(gè)相交平面可能存在不在一條直線上的3個(gè)公共點(diǎn)”是假命題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,,設(shè)函數(shù).
(1)若函數(shù)的圖象關(guān)于直線對(duì)稱,且時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)為橢圓上一點(diǎn).
(1)求橢圓C的方程;
(2)已知兩條互相垂直的直線,經(jīng)過(guò)橢圓的右焦點(diǎn),與橢圓交于四點(diǎn),求四邊形面積的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>;
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)實(shí)數(shù)為的最大值,若實(shí)數(shù),,滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·全國(guó)卷Ⅲ文,18)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)估計(jì)六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=|x﹣m|+|x|,m∈N*,存在實(shí)數(shù)x使f(x)<2成立.
(1)求實(shí)數(shù)m的值;
(2)若α≥1,β≥1,f(α)+f(β)=4,求證:≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某“農(nóng)家樂(lè)”接待中心有客房200間,每間日租金為40元,每天都客滿.根據(jù)實(shí)際需要,該中心需提高租金,如果每間客房日租金每增加4元,客房出租就會(huì)減少10間.(不考慮其他因素)
(1)設(shè)每間客房日租金提高元(),記該中心客房的日租金總收入為,試用表示
(2)在(1)的條件下,每間客房日租金為多少時(shí),該中心客房的日租金總收入最高?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在地面上同一地點(diǎn)觀測(cè)遠(yuǎn)方勻速垂直上升的熱氣球,在上午10點(diǎn)整熱氣球的仰角是,到上午10點(diǎn)20分的仰角變成.請(qǐng)利用下表判斷到上午11點(diǎn)整時(shí),熱氣球的仰角最接近哪個(gè)度數(shù)( )
0.5 | 0.559 | 0.629 | 0.643 | 0.656 | 0.669 | 0.682 | 0.695 | 0.707 | |
0.866 | 0.829 | 0.777 | 0.766 | 0.755 | 0.743 | 0.731 | 0.719 | 0.707 | |
0.577 | 0.675 | 0.810 | 0.839 | 0.869 | 0.900 | 0.933 | 0.966 | 1.0 |
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣ex(a∈R).其中e是自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)f(x)的單調(diào)性并求極值;
(2)令函數(shù)g(x)=f(x)+ex,若x∈[1,+∞)時(shí),g(x)≥0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com