【題目】某“農(nóng)家樂”接待中心有客房200間,每間日租金為40元,每天都客滿.根據(jù)實(shí)際需要,該中心需提高租金,如果每間客房日租金每增加4元,客房出租就會(huì)減少10.(不考慮其他因素)

1)設(shè)每間客房日租金提高元(),記該中心客房的日租金總收入為,試用表示

2)在(1)的條件下,每間客房日租金為多少時(shí),該中心客房的日租金總收入最高?

【答案】1(這里);

2)當(dāng)時(shí),有最大值為.

【解析】

1)設(shè)每間客房日租金提高元(),記該中心客房的日租金總收入為,根據(jù)條件即可求出的表達(dá)式;

2)利用一元二次函數(shù)的性質(zhì)求最值即可.

1)若每間客房日租金提高元?jiǎng)t將有間客房空出,

故該中心客房的日租金總收入為

(這里.

2)因?yàn)?/span>,

所以當(dāng)時(shí),有最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為上一點(diǎn),直線與拋物線交于兩點(diǎn),若,則( )

A. B. 8 C. 16 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.不過原點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)直線,直線,直線的斜率分別為,且成等比數(shù)列.

(1)求的值;

(2)若點(diǎn)在橢圓上,滿足的直線是否存在?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題的真假.

1)過一條直線的平面有無數(shù)多個(gè);

2)如果兩個(gè)平面有兩個(gè)公共點(diǎn),那么它們就有無數(shù)多個(gè)公共點(diǎn),并且這些公共點(diǎn)都在直線上;

3)兩個(gè)平面的公共點(diǎn)組成的集合,可能是一條線段;

4)兩個(gè)相交平面可能存在不在一條直線上的3個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

過圓心和圓上的兩點(diǎn)有且只有一個(gè)平面

若直線與平面平行,則與平面內(nèi)的任意一條直線都沒有公共點(diǎn)

若直線上有無數(shù)個(gè)點(diǎn)不在平面內(nèi),則

如果兩條平行線中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行

垂直于同一個(gè)平面的兩條直線平行

其中正確的命題的個(gè)數(shù)是  

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問名不同性別的大學(xué)生在購買食物時(shí)是否看營養(yǎng)說明,得到如下列聯(lián)表:

總計(jì)

讀營養(yǎng)說明

不讀營養(yǎng)說明

總計(jì)

附:

(1)由以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為性別和是否看營養(yǎng)說明有關(guān)系呢?

(2)從被詢問的名不讀營養(yǎng)說明的大學(xué)生中隨機(jī)選取名學(xué)生,求抽到女生人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且離心率為.

(1)求橢圓的方程;

(2)設(shè)分別為橢圓的左、右焦點(diǎn),不經(jīng)過的直線與橢圓交于兩個(gè)不同的點(diǎn)如果直線、、的斜率依次成等差數(shù)列,求焦點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2018年3月鄭州第二次模擬考試中,某校共有100名文科學(xué)生參加考試,其中語文考試成績低于130的占95%人,數(shù)學(xué)成績的頻率分布直方圖如圖:

(Ⅰ)如果成績不低于130的為特別優(yōu)秀,這100名學(xué)生中本次考試語文、數(shù)學(xué)成績特別優(yōu)秀的大約各多少人?

(Ⅱ)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有3人.

(。⿵模á瘢┲械倪@些同學(xué)中隨機(jī)抽取2人,求這兩人兩科成績都優(yōu)秀的概率.

(ⅱ)根據(jù)以上數(shù)據(jù),完成列聯(lián)表,并分析是否有99%的把握認(rèn)為語文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

語文特別優(yōu)秀

語文不特別優(yōu)秀

合計(jì)

數(shù)學(xué)特別優(yōu)秀

數(shù)學(xué)不特別優(yōu)秀

合計(jì)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對心肺疾病入院的人進(jìn)行問卷調(diào)查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計(jì)

合計(jì)

(1)用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中選人,求恰好有名女性的概率;

(3)為了研究心肺疾病是否與性別有關(guān),請計(jì)算出統(tǒng)計(jì)量,你有多大把握認(rèn)為心肺疾病與性別有關(guān)?

下面的臨界值表供參考:

參考公式: ,其中.

查看答案和解析>>

同步練習(xí)冊答案