【題目】已知ABC的內(nèi)角A,BC的對(duì)邊分別為a,b,c,2acosC=bcosC+ccosB

(1)求角C的大。

(2)若c=,a2+b2=10,求ABC的面積.

【答案】(1);(2)

【解析】

(1)由正弦定理得2sinAcosC=sinBcosC+sinCcosB,由A+B+C=π,求出cosC=,由此求出∠C.(2)由余弦定理得7=10﹣ab,從而ab=3,由此能求出△ABC的面積.

(1)∵△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,2acosC=bcosC+ccosB,

∴2sinAcosC=sinBcosC+sinCcosB,

∵A+B+C=π,∴2sinAcosC=sin(B+C)=sinA,

∴cosC=,∵0<C<π,∴∠C=

(2)∵c=,a2+b2=10,,

∴由余弦定理得:c2=a2+b2﹣2abcosC,

7=10﹣ab,解得ab=3,

∴△ABC的面積S===

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊中, , 分別為, 邊的中點(diǎn), 的中點(diǎn), 邊上一點(diǎn),且,將沿折到的位置,使平面平面.

)求證:平面平面;

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自貢某個(gè)工廠于2016年下半年對(duì)生產(chǎn)工藝進(jìn)行了改造(每半年為一個(gè)生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如圖所示,已知每個(gè)生產(chǎn)周期內(nèi)與其中位數(shù)誤差在±5范圍內(nèi)(含±5)的產(chǎn)品為優(yōu)質(zhì)品,與中位數(shù)誤差在±15范圍內(nèi)(含±15)的產(chǎn)品為合格品(不包括優(yōu)質(zhì)品),與中位數(shù)誤差超過(guò)±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質(zhì)品可獲利潤(rùn)20元,生產(chǎn)一件合格品可獲利潤(rùn)10元,生產(chǎn)一件次品要虧損10元.

(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤(rùn)的分布列和期望;
(Ⅱ)是否有95%的把握認(rèn)為“優(yōu)質(zhì)品與生產(chǎn)工藝改造有關(guān)”.
附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)邊分別是a,b,c,若sin(A﹣B)= sinAcosB﹣ sinBcosA.
(1)求證:A=B;
(2)若A= ,a= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,過(guò)的直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為.

(1)當(dāng)軸垂直時(shí),求直線的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.

(1)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有95%的把握認(rèn)為選手成績(jī)“優(yōu)秀”與文化程度有關(guān)?

優(yōu)秀

合格

合計(jì)

大學(xué)組

中學(xué)組

合計(jì)

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若參賽選手共6萬(wàn)人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù).

(3)在優(yōu)秀等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6.在良好等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為,求使得方程組有唯一一組實(shí)數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+a|﹣2a,其中a∈R.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)≤2x+1的解集;
(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)kR),且滿足f(﹣1)=f(1).

(1)求k的值;

(2)若函數(shù)y=fx)的圖象與直線沒(méi)有交點(diǎn),求a的取值范圍;

(3)若函數(shù),x[0,log23],是否存在實(shí)數(shù)m使得hx)最小值為0,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案