【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+a|﹣2a,其中a∈R.
(1)當a=﹣2時,求不等式f(x)≤2x+1的解集;
(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范圍.
【答案】
(1)解:當a=﹣2時,不等式f(x)≤2x+1為|x﹣2|﹣2x+3≤0.
x≥2時,不等式化為x﹣2﹣2x+3≤0,即x≥1,∴x≥2;
x<2時,不等式化為﹣x+2﹣2x+3≤0,即x≥ ,∴ ≤x≤2,
綜上所述,不等式的解集為{x|x≥ };
(2)解:x∈R,不等式f(x)≤|x+1|恒成立,即|a+a|﹣|x+1|≤2a恒成立,
∵|a+a|﹣|x+1|≤|a﹣1|,
∴|a﹣1|≤2a,∴ .
【解析】(1)當a=﹣2時,分類討論,即可求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,|a+a|﹣|x+1|≤2a恒成立,求出左邊的最大值,即可求a的取值范圍.
【考點精析】本題主要考查了絕對值不等式的解法的相關知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= x2+alnx(a<0).
(1)若函數(shù)f(x)的圖象在點(2,f(2))處的切線斜率為 ,求實數(shù)a的值;
(2)求f(x)的單調區(qū)間;
(3)設g(x)=x2﹣(1﹣a)x,當a≤﹣1時,討論f(x)與g(x)圖象交點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大。
(2)若c=,a2+b2=10,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),直線交橢圓E于A,B兩點,△ABF1的周長為16,△AF1F2的周長為12.
(1)求橢圓E的標準方程與離心率;
(2)若直線l與橢圓E交于C,D兩點,且P(2,2)是線段CD的中點,求直線l的一般方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 (a>b>0)過點P(2,1),且離心率為 .
(Ⅰ)求橢圓的方程;
(Ⅱ)設O為坐標原點,在橢圓短軸上有兩點M,N滿足 ,直線PM、PN分別交橢圓于A,B.
(i)求證:直線AB過定點,并求出定點的坐標;
(ii)求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C經(jīng)過原點O(0,0)且與直線y=2x﹣8相切于點P(4,0).
(1)求圓C的方程;
(2)已知直線l經(jīng)過點(4, 5),且與圓C相交于M,N兩點,若|MN|=2,求出直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com