已知雙曲線的兩條準(zhǔn)線將兩焦點(diǎn)間的線段三等分,則雙曲線的離心率是
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意可得2c×
1
3
=
2a2
c
,變形化簡(jiǎn)可得雙曲線的離心率.
解答: 解:由題意可得2c×
1
3
=
2a2
c
,∴3a2=c2,
∴e=
c
a
=
3
,
故答案為:
3
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,判斷2c×
1
3
=
2a2
c
,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}是等比數(shù)列,b1=1,b2S2=16,b2+S3=17.
(1)求{an}與{bn}的通項(xiàng)公式;
(2)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4
對(duì)一切n∈N*都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=3
e1
-2
e2
,
b
=4
e1
+
e2
,其中
e1
=(1,0),
e2
=(0,1),求:
(1)求
a
b
的值;  
(2)求
a
b
夾角θ的余弦值.  
(3)求
a
b
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的對(duì)稱軸方程為:x=1,設(shè)向量
a
=(sinx,2),
b
=(2sinx,
1
2
),
c
=( cos2x,1),
d
=(2,1).
(1)分別求
a
b
c
d
的取值范圍;
(2)當(dāng)x∈[0,π]時(shí),求不等式f(
a
b
)>f(
c
d
)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了開闊學(xué)生的知識(shí)視野,某學(xué)校舉辦了一次數(shù)學(xué)知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)頻率分布表,解答下列問題:
(Ⅰ)填充頻率分布表中的空格(在解答中直接寫出對(duì)應(yīng)空格序號(hào)的答案);
序號(hào)(i)分組(分?jǐn)?shù))組中值(Gi頻數(shù)(人數(shù))頻率(Fi
1[60,70)650.12
2[70,80)7520
3[80,90)85120.24
4[90,100)95
合計(jì)501
(Ⅱ)規(guī)定成績(jī)不低于90分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在參加的800名學(xué)生中大概有多少同學(xué)獲獎(jiǎng)?
(Ⅲ)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求所有實(shí)多項(xiàng)式f和g,使得對(duì)所有x∈R,有:(x2+x+1)f(x2-x+1)=(x2-x+1)g(x2+x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=5,|
b
|=4,
a
b
的夾角為60°,試問:當(dāng)k為何值時(shí),
(1)向量k
a
-
b
a
+2
b
垂直?
(2)向量k
a
-
b
a
+2
b
平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,點(diǎn)D是AB的中點(diǎn),
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)試在線段A1B1上找一點(diǎn)M,使得平面AC1M∥平面CDB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-x,x∈(-∞,1]
log81x,x∈(1,+∞)
,解方程f(x)=
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案