【題目】已知函數(shù)為常數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn)恰為的零點(diǎn),求的最小值.

【答案】(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間減區(qū)間為,當(dāng)時(shí),的單調(diào)遞增區(qū)間為.(2)

【解析】

試題分析:(1)先求函數(shù)導(dǎo)數(shù),討論導(dǎo)函數(shù)符號(hào)變化規(guī)律:當(dāng)時(shí),導(dǎo)函數(shù)不變號(hào),故的單調(diào)遞增區(qū)間為.當(dāng)時(shí),導(dǎo)函數(shù)符號(hào)由正變負(fù),即單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間減區(qū)間為,(2)先求導(dǎo)數(shù)得為方程的兩根,再求導(dǎo)數(shù)得,因此,而由的零點(diǎn),得,兩式相減得,即得,因此,從而,其中根據(jù)韋達(dá)定理確定自變量范圍:因?yàn)?/span>

,所以

試題解析:(1),當(dāng)時(shí),由解得,即當(dāng)時(shí),單調(diào)遞增, 解得,即當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),,即上單調(diào)遞增,當(dāng)時(shí),,即上單調(diào)遞增,所以當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間減區(qū)間為,當(dāng)時(shí),的單調(diào)遞增區(qū)間為.

(2),則,所以的兩根 即為方程的兩根. 因?yàn)?/span>,所以,又因?yàn)?/span>的零點(diǎn),所以,兩式相減得,得,而,

所以

,由

因?yàn)?/span>,兩邊同時(shí)除以,得,因?yàn)?/span>,故,解得,所以,設(shè),所以,則上是減函數(shù),所以,即的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.

(1)求拋物線的方程;

(2)過(guò)點(diǎn)作直線交拋物線于兩點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,平面,四邊形是直角梯形,其中,. .

1)求異面直線所成角的大;

2)若平面內(nèi)有一經(jīng)過(guò)點(diǎn)的曲線,該曲線上的任一動(dòng)點(diǎn)都滿足所成角的大小恰等于所成角.試判斷曲線的形狀并說(shuō)明理由;

3)在平面內(nèi),設(shè)點(diǎn)是(2)題中的曲線在直角梯形內(nèi)部(包括邊界)的一段曲線上的動(dòng)點(diǎn),其中為曲線的交點(diǎn).為圓心,為半徑的圓分別與梯形的邊交于、兩點(diǎn).當(dāng)點(diǎn)在曲線段上運(yùn)動(dòng)時(shí),試求圓半徑的范圍及的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn),且有當(dāng)點(diǎn)橫坐標(biāo)為時(shí),為正三角形

(1)求的方程;

(2)若直線,且 有且只有一個(gè)公共點(diǎn)

證明直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);

的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四棱錐中,底面是正方形,

(1)如圖2,設(shè)點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),求證: 平面;

(2)已知網(wǎng)格紙上小正方形的邊長(zhǎng)為,請(qǐng)你在網(wǎng)格紙上用粗線畫圖1中四棱錐的府視圖(不需要標(biāo)字母),并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品和產(chǎn)品需要甲、乙兩種新型材料,生產(chǎn)一件產(chǎn)品需要甲材料1.5,乙材料1,用5個(gè)工時(shí),生產(chǎn)一件產(chǎn)品需要甲材料0.5,乙材料0.3,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150,乙材料90,則在不超過(guò)600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品的利潤(rùn)之和的最大值為____________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市要建成宜商、宜居的國(guó)際化新城,該城市的東城區(qū)、西城區(qū)分別引進(jìn)8個(gè)廠家,現(xiàn)對(duì)兩個(gè)區(qū)域的16個(gè)廠家進(jìn)行評(píng)估,綜合得分情況如莖葉圖所示.

(1)根據(jù)莖葉圖判斷哪個(gè)區(qū)域廠家的平均分較高;

(2)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個(gè)區(qū)域各選一個(gè)優(yōu)秀廠家,求得分差距不超過(guò)5分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:以點(diǎn)()為圓心的圓與軸交

于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).

(1)求證:△OAB的面積為定值;

(2)設(shè)直線與圓C交于點(diǎn)M, N,若OM = ON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCDPDDC,EPC的中點(diǎn),作EFPBPB于點(diǎn)F.

1)求證:PA平面EDB;

2)求證:PB平面EFD;

3)求二面角CPBD的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案