【題目】如圖幾何體是四棱錐,為正三角形,,且.
(1)求證: 平面平面;
(2)是棱的中點,求證:平面;
(3)求四棱錐的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx為偶函數(shù),數(shù)列{an}滿足an+1=2f(an-1)+1,且a1=3,an>1.
(1)設(shè)bn=log2(an-1),證明:數(shù)列{bn+1}為等比數(shù)列;
(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種時令商品每件成本為元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來天內(nèi)的日銷售量(件)與時間(天)的關(guān)系如下表所示.
時間/天 | 1 | 3 | 6 | 10 | 36 | …… |
日銷售量 /件 | 94 | 90 | 84 | 76 | 24 | …… |
未來40天內(nèi),前20天每天的價格(元/件)與時間(天)的函數(shù)關(guān)系式為 ,且為整數(shù)),后20天每天的價格(元/件)與時間(天)的函數(shù)關(guān)系式為,且為整數(shù)).
(Ⅰ)認真分析表格中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)(件)與 (天)的關(guān)系式;
(Ⅱ)試預(yù)測未來 40 天中哪一天的日銷售利潤最大,最大利潤是多少?
(Ⅲ)在實際銷售的前 20 天中,該公司決定每銷售 1 件商品就捐贈元利潤給希望工程. 公司通過銷售記錄發(fā)現(xiàn),前 20 天中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在處取得極值.
(1)求的值;
(2)若對任意的,都有成立,(其中是函數(shù)的導(dǎo)函數(shù)),求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(2,2),圓C:x2+y2-8y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標(biāo)原點.
(1)求M的軌跡方程;
(2)當(dāng)|OP|=|OM|時,求l的方程及△POM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為(-3,3),
滿足f(-x)=-f(x),且對任意x,y,都有f(x)-f(y)=f(x-y),當(dāng)x<0時,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判斷f(x)的單調(diào)性,并證明;
(3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺儀器需要增加投入100元,已知總收益滿足函數(shù):R(x)=其中x是儀器的月產(chǎn)量.當(dāng)月產(chǎn)量為何值時,公司所獲得利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進行教學(xué)實驗.為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.
分數(shù) | |||||
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
一般頻數(shù) | 1 | 3 | 6 | 5 | 5 |
(1)由以下統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的額概率不超過0.025的前提下認為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
附:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com