已知tanα=4,tanβ=-3,則tan(α-β)=( �。�
A、
7
11
B、
7
13
C、-
7
11
D、-
7
13
考點(diǎn):兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:由條件直接利用兩角和差正切公式,計(jì)算求得結(jié)果.
解答: 解:∵已知tanα=4,tanβ=-3,∴tan(α-β)=
tanα-tanβ
1+tanαtanβ
=
4+3
1+4×(-3)
=-
7
11
,
故選:C.
點(diǎn)評(píng):本題主要考查兩角和差正切公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

y=sin(2x+
π
3
)的圖象經(jīng)過下列怎樣的平移后所得的圖象關(guān)于點(diǎn)(-
π
12
,0)中心對(duì)稱( �。�
A、向左平移
π
12
個(gè)單位
B、向左平移
π
6
個(gè)單位
C、向右平移
π
12
個(gè)單位
D、向右平移
π
6
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱錐側(cè)面是有公共頂點(diǎn)的三角形,若圍成一個(gè)棱錐側(cè)面的三角形都是正三角形,則這樣側(cè)面的個(gè)數(shù)最多有幾個(gè)( �。�
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-4
lgx-1
的定義域是( �。�
A、[4,+∞)
B、(10,+∞)
C、(4,10)∪(10,+∞)
D、[4,10)∪(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(a+b)=f(a)•f(b)(a,b∈R),且f(x)>0.若f(1)=
1
3
,則f(-2)等于( �。�
A、
1
3
B、
1
9
C、3
D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a≠b,數(shù)列a,x1,x2,b和數(shù)列a,y1,y2,y3,b都是等差數(shù)列,則 
x2-x1
y2-y1
=( �。�
A、
2
3
B、
3
4
C、1
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:4 
3
2
=( �。�
A、2B、6C、8D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖程序框圖,若輸出結(jié)果為0,則①處的執(zhí)行框內(nèi)應(yīng)填的是(  )
A、x=-1
B、b=0
C、x=1
D、a=
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-3x+1,g(x)=Asin(x-
π
6
)(A≠0)
(1)當(dāng)0≤x≤
π
2
時(shí),求y=f(sinx)的最大值;
(2)若對(duì)任意的x1∈[0,3],總存在x2∈[0,3],使f(x1)=g(x2)成立,求實(shí)數(shù)A的取值范圍;
(3)問a取何值時(shí),不等式f(sinx)<a-sinx在[0,2π]上恒成立?

查看答案和解析>>

同步練習(xí)冊(cè)答案