已知函數(shù)f(x)=2x2-3x+1,g(x)=Asin(x-
π
6
)(A≠0)
(1)當(dāng)0≤x≤
π
2
時(shí),求y=f(sinx)的最大值;
(2)若對(duì)任意的x1∈[0,3],總存在x2∈[0,3],使f(x1)=g(x2)成立,求實(shí)數(shù)A的取值范圍;
(3)問(wèn)a取何值時(shí),不等式f(sinx)<a-sinx在[0,2π]上恒成立?
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意知y=f(sinx)=2sin2x-3sinx+1,設(shè)t=sinx,則0≤t≤1,y=2(t2-
3
2
t
)+1,利用配方法能求出t=0時(shí),y=f(sinx)取最大值1.
(2)由已知條件推導(dǎo)出-
1
2
≤sin(x2-
π
6
)≤1
.依據(jù)題意有f(x1)的值域是g(x2)值域的子集,由已知條件能求出實(shí)數(shù)A的取值范圍.
(3)f(sinx)<a-sinx化為2sin2x-2sinx+1<a在[0,2π]上恒成立,由此利用換元法能求出a>5.
解答: 解:(1)由題意知y=f(sinx)=2sin2x-3sinx+1,
設(shè)t=sinx,x∈[0,
π
2
],則0≤t≤1,
∴y=2(t2-
3
2
t
)+1=2(t-
3
4
2-
1
8

當(dāng)t=0時(shí),y=f(sinx)取最大值1.
(2)當(dāng)x1∈[0,3]時(shí),f(x1)值域?yàn)閇-
1
8
,10
],
當(dāng)x2∈[0,3]時(shí),則-
π
6
x2-
π
6
≤3-
π
6
,
∴-
1
2
≤sin(x2-
π
6
)≤1

①當(dāng)A>0時(shí),g(x2)值域?yàn)閇-
1
2
A
,A],
②當(dāng)A<0時(shí),g(x2)值域?yàn)閇A,-
1
2
A
],
而依據(jù)題意有f(x1)的值域是g(x2)值域的子集,
A>0
10<A
-
1
8
≥-
1
2
A
A<0
10≤-
1
2
A
-
1
8
≥A

∴A≥10或A≤-20.
(3)等式f(sinx)<a-sinx在[0,2π]上恒成立,
等價(jià)于2sin2x-2sinx+1<a在[0,2π]上恒成立,
令t=sinx,則t∈[-1,1],
y=2t2-2t+1=2(t-
1
2
)2+
1
2
∈[
1
2
,5].
∴a>5.
點(diǎn)評(píng):本題考查函數(shù)的最大值的求法,考查實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意三角函數(shù)性質(zhì)的合理運(yùn)用.是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=4,tanβ=-3,則tan(α-β)=( 。
A、
7
11
B、
7
13
C、-
7
11
D、-
7
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義在R上的函數(shù)f(x)滿足:對(duì)任意a,b∈R有f(a+b)=f(a)+f(b)+1.
(1)求f(0)的值;
(2)令F(x)=f(x)+1,判斷y=F(x)的奇偶性;
(3)若x>0有f(x)>-1,解不等式f(x)+f(x+5)>-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M:x2+(y-2)2=4,Q是x軸上的動(dòng)點(diǎn),QA、QB分別切圓M于A、B兩點(diǎn).
(1)如果|AB|=2
2
,求直線MQ的方程;
(2)求動(dòng)弦AB的中點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+(4a-4)x+a2-8a+4(x∈R),g(x)與f(x)圖象關(guān)于直線x=1對(duì)稱.
(Ⅰ)求g(x)解析式;
(Ⅱ)設(shè)函數(shù)h(x)=2x3+3ag(x),如果h(x)在開區(qū)間(0,1)上存在極小值,求a的取值范圍;
(Ⅲ)若關(guān)于x的不等式g(x)≥x+a2-5a+11在區(qū)間[0,2]有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)等比數(shù)列的第三項(xiàng)和第四項(xiàng)分別是12和18,試求它的第一項(xiàng)和第二項(xiàng)及通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)y=f(x)定義域是[-3,3],當(dāng)x≥0時(shí),f(x)=
x
-1.
(1)求函數(shù)y=f(x)的解析式;
(2)畫出函數(shù)y=f(x)的圖象,并利用圖象寫出函數(shù)y=f(x)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,角A,B,C的對(duì)邊分別是a,b,c且cosA=
4
5

(1)求sin(B+C)+cos2A
(2)若b=2,s△ABC=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log2
x+1
x-1
;
(1)求f(x)的定義域和值域;
(2)判斷f(x)的奇偶性并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案