在△ABC中,內角A,B,C所對的邊分別是a,b,c,已知a=2,c=
2
,且sinC=
2
sinB.
(Ⅰ)求b的值;
(Ⅱ)求△ABC的面積.
考點:正弦定理,余弦定理
專題:解三角形
分析:(Ⅰ)由正弦定理和已知等式求得b和c的關系,求得b.
(Ⅱ)由余弦定理求得cosC的值,繼而求得sinC的值,最后利用三角形面積公式求得答案.
解答: 解:(Ⅰ)∵sinC=
2
sinB,
∴c=
2
b,
∴b=
2
2
c=1.
(Ⅱ)由余弦定理知cosC=
a2+b2-c2
2ab
=
3
4
,
∴sinC=
1-cos2C
=
7
4
,
∴S=
1
2
absinC=
1
2
×2×1×
7
4
=
7
4
點評:本題主要考查了正弦定理和余弦定理的應用.第一問解題的關鍵是運用正弦定理完成邊角問題的轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2sin2x+sinxcosx+cos2x
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a5=8,a10=18,三點(a1,0)、(a2,2)、(a3,0)在圓C上,
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l:mx+ny+1=0被圓C所截得的弦長為2
3
,求m2+n2的最小值;
(Ⅲ)若一條動直線與圓C交于A、B兩點,且總有|OA|•|OB|=8,(點O為坐標原點),試探究直線AB是否恒與一個定圓相切,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐C-ABD中,AB=AD=BD=BC=CD=2,O為BD的中點,∠AOC=120°,P為AC上一點,Q為AO上一點,且
AP
PC
=
AQ
QO
=2

(Ⅰ)求證:PQ∥平面BCD;
(Ⅱ)求三棱錐P-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對任意實數(shù)x,y都有f(xy)=f(x)+f(y)成立.
(1)求f(0)和f(1)的值.
(2)若f(2)=a,f(3)=b(a,b均為常數(shù)),求f(36)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓的中心是原點O,它的長軸長為2a,短軸長為2
2
,右焦點為F(c,0)(c>0),設點A(
a2
c
,0),|OF|=2|FA|,過點A的直線與橢圓相交于P,Q兩點
(1)求橢圓的方程及離心率;
(2)若
.
OP
.
OQ
=0,求直線PQ的方程;
(3)設
.
AP
.
AQ
(λ>1),過點P作x軸的垂線與橢圓相交于另一點M,證明
.
FM
=-λ
.
FQ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠BAC=90°,AA1⊥平面ABC,D、E分別為A1B1、AA1的中點,點F在棱AB上,且AF=
1
4
AB.
(Ⅰ)求證:EF∥平面BDC1;
(Ⅱ)在棱AC上是否存在一個點G,使得平面EFG將三棱柱分割成的兩部分體積之比為1:31,若存在,指出點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設有兩個命題,命題p:?x∈(1,
5
2
)使函數(shù)g(x)=log2(ax2+2x-2)有意義;命題q:已知函數(shù)f(x)=mx3+nx2的圖象在點(-1,2)處的切線恰好與直線2x+y=1平行,且f(x)在[a,a+1]上單調遞減.若命題p或q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在直線x+y=0上,且點P到原點與到直線x+y-2=0的距離相等,則點P的坐標為
 

查看答案和解析>>

同步練習冊答案