【題目】在一次高三年級統(tǒng)一考試中,數(shù)學試卷有一道滿分10分的選做題,學生可以從,兩道題目中任選一題作答.某校有900名高三學生參加了本次考試,為了了解該校學生解答該選做題的得分情況,計劃從900名考生的選做題成績中隨機抽取一個容量為10的樣本,為此將900名考生選做題的成績按照隨機順序依次編號為001一900.
(1)若采用隨機數(shù)表法抽樣,并按照以下隨機數(shù)表,以方框內(nèi)的數(shù)字5為起點,從左向右依次讀取數(shù)據(jù),每次讀取三位隨機數(shù),一行讀數(shù)用完之后接下一行左端.寫出樣本編號的中位數(shù);
(2)若采用系統(tǒng)抽樣法抽樣,且樣本中最小編號為08,求樣本中所有編號之和:
(3)若采用分層軸樣,按照學生選擇題目或題目,將成績分為兩層,且樣本中題目的成績有8個,平均數(shù)為7,方差為4:樣本中題目的成績有2個,平均數(shù)為8,方差為1.用樣本估計900名考生選做題得分的平均數(shù)與方差.
【答案】(1)667(2)4130(3)平均數(shù)為7.2,方差為3.56
【解析】
(1)由題取出十個編號,先將編號從小到大排列再求中位數(shù)
(2)按照系統(tǒng)抽樣法,抽出的編號可組成以8為首項,以90為公差的等差數(shù)列,求該數(shù)列的前10項和。
(3)分別求出樣本的平均數(shù)和方差,900名考生選做題得分的平均數(shù)與方差和樣本的平均數(shù)與方差相等。
解:(1)根據(jù)題意,讀出的編號依次是:
512,916(超界),935(超界),805,770,951(超界),512(重復),687,858,554,876,647,547,332.
將有效的編號從小到大排列,得
332,512,547,554,647,687,770,805,858,876,
故中位數(shù)為.
(2)由題易知,按照系統(tǒng)抽樣法,抽出的編號可組成以8為首項,以90為公差的等差數(shù)列,故樣本編號之和即為該數(shù)列的前10項之和.
(3)記樣本中8個題目成績分別為,,…,2個題目成績分別為,,
由題意可知,,
,,
故樣本平均數(shù)為.
樣本方差為
.
故估計該校900名考生該選做題得分的平均數(shù)為7.2,方差為3.56.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知點是拋物線上一定點,直線的傾斜角互補,且與拋物線另交于,兩個不同的點.
(1)求點到其準線的距離;
(2)求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為響應低碳綠色出行,某市推出“新能源分時租賃汽車”,其中一款新能源分時租賃汽車,每次租車收費得標準由以下兩部分組成:(1)根據(jù)行駛里程數(shù)按1元/公里計費;(2)當租車時間不超過40分鐘時,按0.12元/分鐘計費;當租車時間超過40分鐘時,超出的部分按0.20元/分鐘計費;(3)租車時間不足1分鐘,按1分鐘計算.已知張先生從家里到公司的距離為15公里,每天租用該款汽車上下班各一次,且每次租車時間t20,60(單位:分鐘).由于堵車,紅綠燈等因素,每次路上租車時間t是一個隨即變量.現(xiàn)統(tǒng)計了他50次路上租車時間,整理后得到下表:
租車時間t(分鐘) | [20,30] | (30,40] | (40,50] | (50,60] |
頻數(shù) | 2 | 18 | 20 | 10 |
將上述租車時間的頻率視為概率.
(1)寫出張先生一次租車費用y(元)與租車時間t(分鐘)的函數(shù)關系式;
(2)公司規(guī)定,員工上下班可以免費乘坐公司接送車,若不乘坐公司接送車的每月(按22天計算)給800元車補.從經(jīng)濟收入的角度分析,張先生上下班應該選擇公司接送車,還是租用該款新能源汽車?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在其圖象上存在不同的兩點,,其坐標滿足條件: 的最大值為0,則稱為“柯西函數(shù)”,則下列函數(shù):① :②:③:④.
其中為“柯西函數(shù)”的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當時,設的兩個極值點,()恰為的零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的空間幾何體中,平面平面與都是邊長為2的等邊三角形,與平面所成的角為60°,且點在平面上的射影落在的平分線上.
(1)求證:平面;
(2)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解居民消費情況,某地區(qū)調(diào)查了10000戶小家庭的日常生活平均月消費金額,根據(jù)所得數(shù)據(jù)繪制了樣本頻率分布直方圖,如圖所示,每戶小家庭的平均月消費金額均不超過9千元,其中第六組第七組第八組尚未繪制完成,但是已知這三組的頻率依次成等差數(shù)列,且第六組戶數(shù)比第七組多500戶,
(1)求第六組第七組第八組的戶數(shù),并補畫圖中所缺三組的直方圖;
(2)若定義月消費在3千元以下的小家庭為4類家庭,定義月消費在3千元至6千無的小家庭為B類家庭,定義月消費6千元以上的小家庭為C類家庭,現(xiàn)從這10000戶家庭中按分層抽樣的方法抽取80戶家庭召開座談會,間A,B,C各層抽取的戶數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線.
(Ⅰ)求曲線C的方程;
(Ⅱ)設Q為曲線C上的一個不在軸上的動點,O為坐標原點,過點作OQ的平行線交曲線C于M,N兩個不同的點, 求△QMN面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com