如圖,ABCD是正方形,PD⊥底面ABCD,點(diǎn)E在PC上,F(xiàn),G分別是PD和AD的中點(diǎn).
(Ⅰ)證明:AP∥平面EFG
(Ⅱ)證明:BC⊥DE.
考點(diǎn):直線與平面平行的判定,空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:(Ⅰ)連結(jié)FG,得AP∥FG,由此能證明AP∥平面EFG.
(Ⅱ)由正方形性質(zhì)得BC⊥DC,由線面垂直得BC⊥PD,從而BC⊥平面PDC,由此能證明BC⊥DE.
解答: 證明:(Ⅰ)如圖,連結(jié)FG,
∵F,G分別是PD和AD的中點(diǎn),
∴AP∥FG,
又∵FG?平面EFG,AP不包含于平面EFG,
∴AP∥平面EFG.
(Ⅱ)∵ABCD是正方形,∴BC⊥DC,
∵PD⊥底面ABCD,∴BC⊥PD,
∵PD∩DC=D,
∴BC⊥平面PDC,
又∵DE?平面PDC,
∴BC⊥DE.
點(diǎn)評(píng):本題考查直線與平面平行的證明,考查異面直線垂直的證明,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=kx與圓x2+y2=3相交于M,N兩點(diǎn),則|MN|等于(  )
A、
1+k2
3
B、
3
C、
2
1+k2
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中A,B兩點(diǎn)的坐標(biāo)為A(2,3,1),B(-1,-2,-4),則A.B點(diǎn)之間的距離是( 。
A、59
B、
59
C、7
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}滿足:a2012=a2011+2a2010,且
anam
=4a1,則6(
1
m
+
1
n
)的最小值為(  )
A、
2
3
B、2
C、4
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a8-
1
2
a11=6,則數(shù)列{an}前9項(xiàng)和S9等于(  )
A、108B、72C、48D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程ax2+4x+3=0的解集為單元素集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
=(1,2),
b
=(-4,2),
c
=m
a
+
b
(m∈R).
(1)若
a
c
,求m的值;
(2)若
c
a
的夾角等于
c
b
的夾角,求|
c
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)=
log2(16-x)(x≤0)
f(x-1)(x>0)
,則f(2014)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c均為實(shí)數(shù),且a≠1,c≠0.
(1)求證:數(shù)列{an-1}為等比數(shù)列;
(2)設(shè)a=c=
1
2
,bn=n(1-an),n∈N*,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)若0<an<1對(duì)任意的n∈N*成立,求證:0<c≤1.

查看答案和解析>>

同步練習(xí)冊(cè)答案