【題目】假設(shè)要考察某公司生產(chǎn)的流感疫苗的劑量是否達(dá)標(biāo),現(xiàn)從500支疫苗中抽取50支進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表法抽取樣本時(shí),先將500支疫苗按進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第7行第8列的數(shù)開(kāi)始向右讀,請(qǐng)寫(xiě)出第3支疫苗的編號(hào)________.(下面摘取了隨機(jī)數(shù)表第7行至第9行)
第7行:84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50
25 83 92 12 06 76
第8行:63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58
07 44 39 52 38 79
第9行:33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13
42 99 66 02 79 54
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車(chē)應(yīng)運(yùn)而生,某市場(chǎng)研究人員為了了解共享單車(chē)運(yùn)營(yíng)公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖:
(1)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并
預(yù)測(cè)公司2017年4月的市場(chǎng)占有率;
(2)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車(chē),現(xiàn)有采購(gòu)成本分別為元/輛和1200元/輛的、兩款車(chē)型可供選擇,按規(guī)定每輛單車(chē)最
多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致單車(chē)使用壽命各不相同,考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)這兩款車(chē)型的單車(chē)各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車(chē)使用壽命的頻數(shù)表如右表:經(jīng)測(cè)算,平均每輛單車(chē)每年可以帶來(lái)收入500元,不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車(chē)的使用壽命都是整數(shù)年,且以頻率作為每輛單車(chē)使用壽命的概率,如果你是公司的負(fù)責(zé)人,以每輛單車(chē)產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車(chē)型?
參考公式:回歸直線方程為,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中, , . ,且平面, ,點(diǎn)為上任意一點(diǎn).
(1)求證: ;
(2)點(diǎn)在線段上運(yùn)動(dòng)(包括兩端點(diǎn)),若平面與平面所成的銳二面角為60°,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)四位數(shù)的各位數(shù)字相加和為,則稱(chēng)該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問(wèn)用數(shù)字組成的無(wú)重復(fù)數(shù)字且大于的“完美四位數(shù)”有( )個(gè)
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的方程為().
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若直線l與x正半軸、射線()分別交于P,Q兩點(diǎn),當(dāng)a為何值時(shí),的面積最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右頂點(diǎn)分別為,左焦點(diǎn)為,點(diǎn)為橢圓上任一點(diǎn),若直線與的斜率之積為,且橢圓經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若交直線于兩點(diǎn),過(guò)左焦點(diǎn)作以為直徑的圓的切線.問(wèn)切線長(zhǎng)是否為定值,若是,請(qǐng)求出定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取人參加學(xué)校座談交流,那么從得分在區(qū)間與各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的人中,選出人參加全市座談交流,設(shè)表示得分在區(qū)間中參加全市座談交流的人數(shù),求的分布列及數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售某種品牌的空調(diào)器,每周周初購(gòu)進(jìn)一定數(shù)量的空調(diào)器,商場(chǎng)每銷(xiāo)售一臺(tái)空調(diào)器可獲利500元,若供大于求,則每臺(tái)多余的空調(diào)器需交保管費(fèi)100元;若供不應(yīng)求,則可從其他商店調(diào)劑供應(yīng),此時(shí)每臺(tái)空調(diào)器僅獲利潤(rùn)200元。
(Ⅰ)若該商場(chǎng)周初購(gòu)進(jìn)20臺(tái)空調(diào)器,求當(dāng)周的利潤(rùn)(單位:元)關(guān)于當(dāng)周需求量n(單位:臺(tái),)的函數(shù)解析式;
(Ⅱ)該商場(chǎng)記錄了去年夏天(共10周)空調(diào)器需求量n(單位:臺(tái)),整理得下表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場(chǎng)周初購(gòu)進(jìn)20臺(tái)空調(diào)器,X表示當(dāng)周的利潤(rùn)(單位:元),求X的分布列及數(shù)學(xué)期望。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com