【題目】在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,兩種坐標系取相同的單位長度.已知曲線,過點的直線的參數(shù)方程為.直線與曲線分別交于、

(1)求的取值范圍;

(2)若、成等比數(shù)列,求實數(shù)的值.

【答案】12

【解析】

試題 )由題意曲線C的直角坐標方程為將直線l的參數(shù)方程代入曲線C的直角坐標方程令即可;

)設交點MN對應的參數(shù)分別為,由執(zhí)行參數(shù)方程中的幾何意義可得,然后由成等比數(shù)列,可得

代入求解即可

試題解析:()曲線C的直角坐標方程為

將直線l的參數(shù)方程

代入曲線C的直角坐標方程得:

因為交于兩點,所以,即

的取值范圍

)設交點M,N對應的參數(shù)分別為.

成等比數(shù)列,則

解得(舍)所以滿足條件的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿市場銷售價與上市時間的關系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關系用圖(2)的拋物線段表示.

1)寫出圖(1)表示的市場售價與時間的函數(shù)關系式;寫出圖(2)表示的種植成本與時間的函數(shù)關系式;

2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為:為參數(shù)),在以為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若曲線交于,兩點,點的坐標為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面,,的中點..

(1)求證:平面平面;

(2),在線段上是否存在一點,使得二面角的余弦值為.請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上函數(shù)的圖象關于圖象上點(1,0)對稱,f(x)對任意的實數(shù)x都有f(3)=0,則函數(shù)y=f(x)在區(qū)間上的零點個數(shù)最少有(

A.2020B.1768C.1515D.1514

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若曲線上點處的切線過點,求函數(shù)的單調減區(qū)間;

(Ⅱ)若函數(shù)上無零點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點坐標為別為,離心率是橢圓的左、右頂點分別記為,.點是橢圓上位于軸上方的動點,直線,與直線分別交于,兩點.

Ⅰ)求橢圓的方程.

Ⅱ)求線段長度的最小值.

Ⅲ)當線段的長度最小時,在橢圓上的點滿足:的面積為.試確定點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直線xx1,xx2yf(x)圖象的任意兩條對稱軸,且|x1x2|的最小值為 .

(Ⅰ)求f(x)的表達式;

(Ⅱ)將函數(shù)f(x)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)yg(x)的圖象,求函數(shù)g(x)的單調減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設拋物線的準線軸交于橢圓的右焦點,為左焦點,橢圓的離心率為,拋物線與橢圓交于軸上方一點,連接并延長于點上一動點,且在之間移動.

(1)當取最小值時,求的方程;

(2)若的邊長恰好是三個連接的自然數(shù),求面積的最大值.

查看答案和解析>>

同步練習冊答案