【題目】已知函數(shù),直線是圖象的一條對稱軸.
(1)求的單調遞減區(qū)間;
(2)已知函數(shù)的圖象是由圖象上的各點的橫坐標伸長到原來的4倍,然后再向左平移個單位長度得到,若,,求的值.
【答案】(1),.(2)
【解析】
(1)首先根據(jù)兩角和的正弦公式及二倍角公式將函數(shù)化簡,根據(jù)直線是圖象的一條對稱軸,可得,即,可得,,又,即可求出的值,從而求出函數(shù)解析式,再根據(jù)正弦函數(shù)的性質求出函數(shù)的單調遞減區(qū)間;
(2)根據(jù)三角函數(shù)的變換規(guī)則得到,由,可得,最后根據(jù)同角三角函數(shù)的基本關系及兩角差的正弦公式計算可得;
解:(1)∵函數(shù),
∴.
∵直線是圖象的一條對稱軸,故,
即,
故有,,故,.
再由,∴,
由,可得,,
∴的單調遞減區(qū)間為,.
(2)由(1)知,,可得
.
由,,可得,
故.
又,
解得,或
因為
所以
∴
.
科目:高中數(shù)學 來源: 題型:
【題目】下列結論正確的是( )
A.在中,若,則
B.在銳角三角形中,不等式恒成立
C.在中,若,,則為等腰直角三角形
D.在中,若,,三角形面積,則三角形外接圓半徑為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,圓與軸負半軸交于點,過點的直線,分別與圓交于兩點.
(1)過點作圓的兩條切線,切點分別為,求;
(2)若,求證:直線過定點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中.
(1)是否存在實數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請說明理由;
(2)若是數(shù)列的前項和,求滿足的所有正整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標坐標系中,曲線的參數(shù)方程為(為參數(shù)),曲線: .以為極點, 軸的非負半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系.
(1)求曲線的極坐標方程;
(2)射線()與曲線的異于極點的交點為,與曲線的交點為,求.
【答案】(1) 的極坐標方程為, 的極坐標方程為;(2) .
【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關系消參數(shù)得曲線,再根據(jù)將曲線的極坐標方程;(2)將代人曲線的極坐標方程,再根據(jù)求.
試題解析:(1)曲線的參數(shù)方程(為參數(shù))
可化為普通方程,
由,可得曲線的極坐標方程為,
曲線的極坐標方程為.
(2)射線()與曲線的交點的極徑為,
射線()與曲線的交點的極徑滿足,解得,
所以.
【題型】解答題
【結束】
23
【題目】設函數(shù).
(1)設的解集為,求集合;
(2)已知為(1)中集合中的最大整數(shù),且(其中,,為正實數(shù)),求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),若關于的方程恰有兩個不相等的實數(shù)根, 則實數(shù)的取值范圍是
A. B. , C. , D. ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在△中, , 分別為, 的中點, 為的中點, , .將△沿折起到△的位置,使得平面平面, 為的中點,如圖2.
(1)求證: 平面;
(2)求證:平面平面;
(3)線段上是否存在點,使得平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖在直三棱柱ABC A1B1C1中,已知AC⊥BC,BC=CC1,設AB1的中點為D,B1C∩BC1=E.
(1)求證:DE∥平面AA1C1C;
(2) 求證:BC1⊥AB1;
(3)設AC=BC=CC1 =1,求銳二面角A- B1C- A1的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com