【題目】在直角坐標坐標系中,曲線的參數方程為(為參數),曲線: .以為極點, 軸的非負半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系.
(1)求曲線的極坐標方程;
(2)射線()與曲線的異于極點的交點為,與曲線的交點為,求.
【答案】(1) 的極坐標方程為, 的極坐標方程為;(2) .
【解析】試題分析:(1)先根據三角函數平方關系消參數得曲線,再根據將曲線的極坐標方程;(2)將代人曲線的極坐標方程,再根據求.
試題解析:(1)曲線的參數方程(為參數)
可化為普通方程,
由,可得曲線的極坐標方程為,
曲線的極坐標方程為.
(2)射線()與曲線的交點的極徑為,
射線()與曲線的交點的極徑滿足,解得,
所以.
【題型】解答題
【結束】
23
【題目】設函數.
(1)設的解集為,求集合;
(2)已知為(1)中集合中的最大整數,且(其中,,為正實數),求證:.
科目:高中數學 來源: 題型:
【題目】3月12日,全國政協(xié)總工會界別小組會議上,人社部副部長湯濤在回應委員呼聲時表示無論是從養(yǎng)老金方面,還是從人力資源的合理配置來說,延遲退休是大勢所趨.不過,湯部長也表示,不少職工對于延遲退休有著不同的意見.某高校一社團就是否同意延遲退休的情況隨機采訪了200名市民,并進行了統(tǒng)計,得到如下的列聯(lián)表:
贊同延遲退休 | 不贊同延遲退休 | 合計 | |
男性 | 80 | 20 | 100 |
女性 | 60 | 40 | 100 |
合計 | 140 | 60 | 200 |
(1)根據上面的列聯(lián)表判斷能否有的把握認為對延遲退休的態(tài)度與性別有關;
(2)為了進一步征求對延遲退休的意見和建議,從抽取的200位市民中對不贊同的按照分層抽樣的方法抽取6人,再從這6人中隨機抽出3名進行電話回訪,求3人中至少有1人為男性的概率.
附: ,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某移動支付公司隨機抽取了100名移動支付用戶進行調查,得到如下數據:
每周移動支付次數 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用移動支付超過3次的樣本中,按性別用分層抽樣隨機抽取5名用戶.
①求抽取的5名用戶中男、女用戶各多少人;
②從這5名用戶中隨機抽取2名用戶,求抽取的2名用戶均為男用戶的概率.
(2)如果認為每周使用移動支付次數超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過0.05的前提下,認為“喜歡使用移動支付”與性別有關?
附表及公式:
0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(n)是定義在N*上的增函數,f(4)=5,且滿足:
①任意n∈N*,f(n) Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).
(1)求f(1),f(2),f(3)的值;
(2)求f(n)的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,直線是圖象的一條對稱軸.
(1)求的單調遞減區(qū)間;
(2)已知函數的圖象是由圖象上的各點的橫坐標伸長到原來的4倍,然后再向左平移個單位長度得到,若,,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的任意三個頂點為頂點的三角形的面積是.
(1)求橢圓的方程;
(2)設是橢圓的右頂點,點在軸上.若橢圓上存在點,使得,求點橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數據分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據直方圖,這200名學生中每周的自習時間不少于22.5小時的人數是
A. 56 B. 60 C. 120 D. 140
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(Ⅰ)設命題實數滿足,其中,命題實數滿足.若是的充分不必要條件,求實數的取值范圍.
(Ⅱ)已知命題方程表示焦點在x軸上雙曲線;命題空間向量,的夾角為銳角,如果命題“”為真,命題“”為假.求的取值范圍;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】上饒某購物中心在開業(yè)之后,為了解消費者購物金額的分布,在當月的電腦消費小票中隨機抽取張進行統(tǒng)計,將結果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設消費金額均在元的區(qū)間內).
(1)若在消費金額為元區(qū)間內按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;
(2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設計了兩種不同的促銷方案:
方案一:全場商品打8.5折;
方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數據的替代值).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com