【題目】上饒某購物中心在開業(yè)之后,為了解消費者購物金額的分布,在當(dāng)月的電腦消費小票中隨機抽取張進行統(tǒng)計,將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設(shè)消費金額均在元的區(qū)間內(nèi)).
(1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;
(2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設(shè)計了兩種不同的促銷方案:
方案一:全場商品打8.5折;
方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數(shù)據(jù)的替代值).
【答案】(1);(2)方案二優(yōu)惠力度更大.
【解析】試題分析:(1)根據(jù)分層抽樣中抽取張, 中抽取張,列舉出張電腦小票中任選張的事件數(shù)為 ,這張小票均來自元區(qū)間的事件數(shù)為 ,由古典概型概率公式可得結(jié)果;(2)分別計算出兩種方案的平均優(yōu)惠金額,平均優(yōu)惠金額較大的方案即為優(yōu)惠力度較大的方案.
試題解析:(1)由圖可知, 中抽取2張,設(shè)為, 中抽取4張,設(shè)為,
共有15個基本事件: ,其中2張小票均來自的基本事件為,所以;
(2)方案一: 元.
方案二:
,所以方案二優(yōu)惠力度更大.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線: .以為極點, 軸的非負半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)射線()與曲線的異于極點的交點為,與曲線的交點為,求.
【答案】(1) 的極坐標(biāo)方程為, 的極坐標(biāo)方程為;(2) .
【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線,再根據(jù)將曲線的極坐標(biāo)方程;(2)將代人曲線的極坐標(biāo)方程,再根據(jù)求.
試題解析:(1)曲線的參數(shù)方程(為參數(shù))
可化為普通方程,
由,可得曲線的極坐標(biāo)方程為,
曲線的極坐標(biāo)方程為.
(2)射線()與曲線的交點的極徑為,
射線()與曲線的交點的極徑滿足,解得,
所以.
【題型】解答題
【結(jié)束】
23
【題目】設(shè)函數(shù).
(1)設(shè)的解集為,求集合;
(2)已知為(1)中集合中的最大整數(shù),且(其中,,為正實數(shù)),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:①若,則;②若,則存在唯一實數(shù),使得;③若,則;④若,且與的夾角為鈍角,則;⑤若平面內(nèi)定點滿足,則為正三角形.其中正確的命題序號為 ________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為, ,且離心率為, 為橢圓上任意一點,當(dāng)時, 的面積為1.
(1)求橢圓的方程;
(2)已知點是橢圓上異于橢圓頂點的一點,延長直線, 分別與橢圓交于點, ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.
【答案】(1);(2)
【解析】試題分析:(1)設(shè)由題,由此求出,可得橢圓的方程;
(2)設(shè), ,
當(dāng)直線的斜率不存在時,可得;
當(dāng)直線的斜率不存在時,同理可得.
當(dāng)直線、的斜率存在時,,
設(shè)直線的方程為,則由消去通過運算可得
,同理可得,由此得到直線的斜率為,
直線的斜率為,進而可得.
試題解析:(1)設(shè)由題,
解得,則,
橢圓的方程為.
(2)設(shè), ,
當(dāng)直線的斜率不存在時,設(shè),則,
直線的方程為代入,可得,
, ,則,
直線的斜率為,直線的斜率為,
,
當(dāng)直線的斜率不存在時,同理可得.
當(dāng)直線、的斜率存在時,,
設(shè)直線的方程為,則由消去可得:
,
又,則,代入上述方程可得
,
,則
,
設(shè)直線的方程為,同理可得,
直線的斜率為,
直線的斜率為,
.
所以,直線與的斜率之積為定值,即.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若方程有兩個實數(shù)根, ,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在直三棱柱ABC A1B1C1中,已知AC⊥BC,BC=CC1,設(shè)AB1的中點為D,B1C∩BC1=E.
(1)求證:DE∥平面AA1C1C;
(2) 求證:BC1⊥AB1;
(3)設(shè)AC=BC=CC1 =1,求銳二面角A- B1C- A1的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)有一套住房的房價從2002年的20萬元上漲到2012年的40萬元,下表給出了兩種價格增長方式,其中是按直線上升的房價,是按指數(shù)增長的房價,t是2002年以來經(jīng)過的年數(shù).
t | 0 | 5 | 10 | 15 | 20 |
/萬元 | 20 | 30 | 40 | 50 | 60 |
/萬元 | 20 | 40 | 80 |
(1)求函數(shù)的解析式;
(2)求函數(shù)的解析式;
(3)完成上表空格中的數(shù)據(jù),并在同一直角坐標(biāo)系中畫出兩個函數(shù)的圖象,然后比較兩種價格增長方式的差異.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()在同一半周期內(nèi)的圖象過點, , ,其中為坐標(biāo)原點, 為函數(shù)圖象的最高點, 為函數(shù)的圖象與軸的正半軸的交點, 為等腰直角三角形.
(1)求的值;
(2)將繞原點按逆時針方向旋轉(zhuǎn)角,得到,若點恰好落在曲線()上(如圖所示),試判斷點是否也落在曲線()上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸長為,離心率為,直線:與橢圓交于不同的兩點,,為橢圓的左頂點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)的面積為時,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列五個命題不正確的是________.
①若等比數(shù)列的公比,則數(shù)列單調(diào)遞增.
②常數(shù)列既是等差數(shù)列又是等比數(shù)列.
③在中,角ABC所對的邊分別為a,b,c,若則且.
④在中,若,則為銳角三角形.
⑤等比數(shù)列的前n項和為,對任意正整數(shù)m,則,,,…仍成等比數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com