已知函數(shù)y=ax-2+1(a>0,a≠1),不論常數(shù)a為何值,函數(shù)圖象恒過定點
 
考點:指數(shù)函數(shù)的圖像與性質
專題:函數(shù)的性質及應用
分析:根據(jù)指數(shù)函數(shù)過定點的性質,即a0=1恒成立,即可得到結論.
解答: 解:∵y=ax-2+1,
∴當x-2=0時,x=2,
此時y=1+1=2,
即函數(shù)過定點(2,2).
故答案為:(2,2)
點評:本題主要考查指數(shù)函數(shù)的圖象和性質,直接解方程即可.比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求函數(shù)的定義域:
①f(x)=
5
x+2
+x;
②f(x)=
(
1
2
)x+8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α內有n個點,且任意三點都不共線,若“這n個點到平面β的距離均相等”是“α∥β”的充要條件,則n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù),在[0,+∞)上是減函數(shù),且f(2)=0,則不等式xf(x)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-lne2=x,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個非零向量
a
b
所成的角為θ(0≤θ≤π),規(guī)定向量
c
=
a
×
b
,滿足:
(1)模:|
c
|=|
a
||
b
|sinθ;
(2)方向:向量
c
的方向垂直于向量
a
b
(向量
a
b
構成的平面),且符合“右手定則”:用右手的四指表示向量
a
的方向,然后手指朝著手心的方向擺動角度θ到向量
b
的方向,大拇指所指的方向就是向量
c
的方向.
這樣的運算就叫向量的叉乘,又叫外積、向量積.
對于向量的叉乘運算,下列說法正確的是
 

a
×
a
=
0
;      
a
×
b
=
0
等價于
a
b
共線;
③叉乘運算滿足交換律,即
a
×
b
=
b
×
a
;
④叉乘運算滿足數(shù)乘結合律,即λ(
a
×
b
)=(λ
a
)×
b
=
a
×(λ
b
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
a
=(sinA,1),
b
=(
3
,cosA),且
a
b
,則角A的大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=1+
2a(sinθ-cosθ)
a2+2acosθ+2
(a,θ∈R,a≠0),那么對于任意的a,θ,則此函數(shù)的最大值與最小值之和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=
|x-1|   x≥1
1-x2   x<1
,則f(
1
2
)=( 。
A、
1
2
B、-
1
2
C、-
3
4
D、
3
4

查看答案和解析>>

同步練習冊答案