【題目】已知函數(shù)(且)是定義在上的奇函數(shù).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)判斷并用定義證明的單調(diào)性;
(Ⅲ)若,且成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);
(Ⅱ)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減;證明見解析;
(Ⅲ).
【解析】
(Ⅰ)由題意,由奇函數(shù)的特征得,利用對(duì)數(shù)的運(yùn)算性質(zhì)求實(shí)數(shù)的值;
(Ⅱ)設(shè),且,利用作差法用定義證明的單調(diào)性;
(Ⅲ)由可得的范圍,得函數(shù)的單調(diào)性,由利用奇偶性得,再根據(jù)單調(diào)性求實(shí)數(shù)的取值范圍.
解:(Ⅰ)由題意,
∵函數(shù)是定義在上的奇函數(shù),
∴,即,
∴,即,
∴,又,∴;
(Ⅱ)由(Ⅰ)知,
設(shè),且,
則,
∵,∴,
∴,,∴,
∴當(dāng)時(shí),,即,在上單調(diào)遞增;
當(dāng)時(shí),,即,在上單調(diào)遞減;
綜上:當(dāng)時(shí),在上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞減;
(Ⅲ)由得,
∴,由(Ⅱ)知,在上單調(diào)遞減,
由利用奇偶性得,
∴,解得,
綜上:實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知向量,又點(diǎn),,,.
(1)若,且,求向量;
(2)若向量與向量共線,常數(shù),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)指令,機(jī)器人在平面上能完成下列動(dòng)作:如圖,先從原點(diǎn)O沿正東偏北方向行走一段時(shí)間后,再向正北方向行走一段時(shí)間,但何時(shí)改變方向不定.假定機(jī)器人行走速度為10m/min,則機(jī)器人行走2min時(shí)的可能落點(diǎn)區(qū)域的面積是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)有兩個(gè)不同極值點(diǎn),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:對(duì)任意,恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有10名乒乓球選手進(jìn)行單循環(huán)賽.比賽結(jié)果顯示,沒(méi)有和局,且任意5人中既有1人勝其余4人,又有1人負(fù)其余4人.則恰好勝了兩場(chǎng)的選手有______名.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市理論預(yù)測(cè)2020年到2024年人口總數(shù)與年份的關(guān)系如下表所示:
年份202x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬(wàn)) | 5 | 7 | 8 | 11 | 19 |
(1)請(qǐng)?jiān)谟颐娴淖鴺?biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)據(jù)此估計(jì)2025年該城市人口總數(shù).
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線與拋物線交于,兩點(diǎn),且.
(1)求的方程;
(2)試問(wèn):在軸的正半軸上是否存在一點(diǎn),使得的外心在上?若存在,求的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】社會(huì)上有人認(rèn)為在機(jī)動(dòng)車駕駛技術(shù)上,男性優(yōu)于女性,這是真的么?某社會(huì)調(diào)查機(jī)構(gòu)與交警合作隨機(jī)統(tǒng)計(jì)了經(jīng)常開車的100名駕駛員最近三個(gè)月內(nèi)是否有交通事故或交通違法事件發(fā)生,得到下面的列聯(lián)表:
男 | 女 | 總計(jì) | |
無(wú) | 40 | 35 | 75 |
有 | 15 | 10 | 25 |
總計(jì) | 55 | 45 | 100 |
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
據(jù)此表,可得( ).
A.認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性不足
B.認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性超過(guò)
C.認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性超過(guò)
D.認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性超過(guò)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2 -4 x+5,若x=時(shí),y=f(x)有極值.
(1)求a的值;
(2)求y=f(x)在[-3,1]上的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com