如圖,△ABC內(nèi)接于⊙O,過(guò)BC中點(diǎn)D作平行于AC的直線l,l交AB于E,交⊙O在A點(diǎn)處的切線于點(diǎn)P,若PE=6,ED=3,則AE的長(zhǎng)為
 
考點(diǎn):與圓有關(guān)的比例線段
專題:計(jì)算題,直線與圓
分析:根據(jù)DE∥AC利用平行線的性質(zhì),證出AE=BE且∠BDE=∠C.再由弦切角定理證出∠BDE=∠PAE,從而得出∠BED=∠PEA,可得△BED∽△PEA,最后利用題中數(shù)據(jù)計(jì)算線段的比,即可算出AE的長(zhǎng).
解答: 解:∵D是BC的中點(diǎn),DE∥AC,∴AE=BE,且∠BDE=∠C.
又∵PA切圓O于點(diǎn)A,∴∠PAE=∠C,可得∠BDE=∠PAE.
∵∠BED=∠PEA,
∴△BED∽△PEA,可得
BE
PE
=
ED
AE
,所以AE2=BE•AE=PE•ED=18.
由此解出AE=3
2

故答案為:3
2
點(diǎn)評(píng):本題給出圓滿足的條件,求線段AE的長(zhǎng).著重考查了弦切角定理、平行線的性質(zhì)、相似三角形的判定與性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=1,AB=
2
,BC=
3
,AA1=
2

(Ⅰ)求證:A1B⊥B1C;
(Ⅱ)求二面角A1-B1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
|=|
b
|=1,且
a
b
的夾角為
π
3
,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A、B滿足
OA
=2
a
+
b
OB
=3
a
-
b
,則△OAB的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-x2+2x+1的值域?yàn)?div id="6rzlxem" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從5本不同的文藝書(shū)和6本不同的科技書(shū)中任取3本,則文藝書(shū)和科技書(shū)都至少有一本的不同取法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠ABC=
π
4
,AB=
2
,BC=3,則sin∠BAC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2-2x+3(-1≤x≤4)的值域?yàn)?div id="x7xahiq" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1的左、右焦點(diǎn),過(guò)F1且垂直于x軸的直線與橢圓交于A、B兩點(diǎn),若△ABF2為正三角形,則該橢圓的焦距與長(zhǎng)軸的比值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a=2”是“關(guān)于x的不等式|x+1|+|x+2|<a的解集非空”的( 。
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案