【題目】函數(shù)內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

【答案】D

【解析】

設(shè),則函數(shù)等價(jià)為,條件轉(zhuǎn)化為,進(jìn)而轉(zhuǎn)化為有兩個(gè)交點(diǎn),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)的幾何意義,結(jié)合絕對(duì)值,合理分類討論,即可求解,得到答案.

由題意,函數(shù)

設(shè),則

因?yàn)?/span>,所以,

則函數(shù)等價(jià)于

即等價(jià)為上有兩個(gè)零點(diǎn),

有兩個(gè)根,

設(shè),則,即函數(shù)是奇函數(shù),

,即函數(shù)上是增函數(shù),

當(dāng),若時(shí),則函數(shù)只有一個(gè)零點(diǎn),不滿足條件;

時(shí),則,

設(shè)過原點(diǎn)的直線相切,切點(diǎn)為,

,則,

則切線方程為

切線過原點(diǎn),則,即,

,

當(dāng),即切點(diǎn)為,此時(shí)切線的斜率為,

,則,此時(shí)切線相切,只有一個(gè)交點(diǎn),不滿足題意.

當(dāng)直線過點(diǎn)時(shí),,

此時(shí)直線,

要使得由兩個(gè)交點(diǎn),則,

當(dāng)時(shí),時(shí),

,得,當(dāng)直線過點(diǎn)時(shí),

要使得由兩個(gè)交點(diǎn),則

綜上,

即實(shí)數(shù)的取值范圍是

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(Ⅰ)列表求的所有極值;

(Ⅱ)當(dāng)時(shí),

(i)求證:;

(ii)若恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年,在慶祝中華人民共和國(guó)成立周年之際,又迎來了以“創(chuàng)軍人榮耀,筑世界和平”為宗旨的第七屆世界軍人運(yùn)動(dòng)會(huì).據(jù)悉,這次軍運(yùn)會(huì)將于日至日在美麗的江城武漢舉行,屆時(shí)將有來自全世界多個(gè)國(guó)家和地區(qū)的近萬名軍人運(yùn)動(dòng)員參賽.相對(duì)于奧運(yùn)會(huì)、亞運(yùn)會(huì)等大型綜合賽事,軍運(yùn)會(huì)或許對(duì)很多人來說還很陌生.為此,武漢某高校為了在學(xué)生中更廣泛的推介普及軍運(yùn)會(huì)相關(guān)知識(shí)內(nèi)容,特在網(wǎng)絡(luò)上組織了一次“我所知曉的武漢軍運(yùn)會(huì)”知識(shí)問答比賽,為便于對(duì)答卷進(jìn)行對(duì)比研究,組委會(huì)抽取了名男生和名女生的答卷,他們的考試成績(jī)頻率分布直方圖如下:

(注:?jiǎn)柧頋M分為分,成績(jī)的試卷為“優(yōu)秀”等級(jí))

(1)從現(xiàn)有名男生和名女生答卷中各取一份,分別求答卷成績(jī)?yōu)椤皟?yōu)秀”等級(jí)的概率;

(2)求列聯(lián)表中,,的值,并根據(jù)列聯(lián)表回答:能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“答卷成績(jī)?yōu)閮?yōu)秀等級(jí)與性別有關(guān)”?

總計(jì)

優(yōu)秀

非優(yōu)秀

總計(jì)

(3)根據(jù)男、女生成績(jī)頻率分布直方圖,對(duì)他們的成績(jī)的優(yōu)劣進(jìn)行比較.

附:參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(請(qǐng)寫出式子在寫計(jì)算結(jié)果)有4個(gè)不同的小球,4個(gè)不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):

1)共有多少種方法?

2)若每個(gè)盒子不空,共有多少種不同的方法?

3)恰有一個(gè)盒子不放球,共有多少種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)在直角坐標(biāo)系的第一象限內(nèi)的任意兩點(diǎn),作如下定義:,那么稱點(diǎn)是點(diǎn)的“上位點(diǎn)”,同時(shí)點(diǎn)是點(diǎn)的“下位點(diǎn)”.

1)試寫出點(diǎn)的一個(gè)“上位點(diǎn)”坐標(biāo)和一個(gè)“下位點(diǎn)”坐標(biāo);

2)設(shè)、、均為正數(shù),且點(diǎn)是點(diǎn)的上位點(diǎn),請(qǐng)判斷點(diǎn)是否既是點(diǎn)的“下位點(diǎn)”又是點(diǎn)的“上位點(diǎn)”,如果是請(qǐng)證明,如果不是請(qǐng)說明理由;

3)設(shè)正整數(shù)滿足以下條件:對(duì)任意實(shí)數(shù),總存在,使得點(diǎn)既是點(diǎn)的“下位點(diǎn)”,又是點(diǎn)的“上位點(diǎn)”,求正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心在x軸上,且經(jīng)過點(diǎn)

1)求圓C的方程;

2)若點(diǎn),直線l平行于OQO為坐標(biāo)原點(diǎn))且與圓C相交于M,N兩點(diǎn),直線QM、QN的斜率分別為kQM、kQN,求證:kQM+kQN為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與圓有且僅有兩個(gè)公共點(diǎn),點(diǎn)、、分別是橢圓上的動(dòng)點(diǎn)、左焦點(diǎn)、右焦點(diǎn),三角形面積的最大值是

(1)求橢圓的方程;

(2)若點(diǎn)在橢圓第一象限部分上運(yùn)動(dòng),過點(diǎn)作圓的切線,過點(diǎn)的垂線,求證:,交點(diǎn)的縱坐標(biāo)的絕對(duì)值為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)若,解不等式;

(Ⅱ)當(dāng)時(shí),函數(shù)的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 相交于點(diǎn),點(diǎn)在線段上,,且平面

(1)求實(shí)數(shù)的值;

(2)若,, 求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案