已知函數(shù),.
(1)若函數(shù)處取得極值,求實(shí)數(shù)的值;
(2)若,求函數(shù)在區(qū)間上的最大值和最小值.

(1)(2)最小值,最大值29

解析試題分析:(1)先求導(dǎo),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/28/8/tpe221.png" style="vertical-align:middle;" />是函數(shù)的極值點(diǎn),則,即可求實(shí)數(shù)的值。(2)先求導(dǎo)再令導(dǎo)數(shù)等于0,導(dǎo)論導(dǎo)數(shù)的正負(fù)得函數(shù)的增減區(qū)間,根據(jù)函數(shù)的增減性可求其最值。
試題解析:解答:(1)∵函數(shù),
.                     2分
∵函數(shù)處取得極值,∴,
,∴實(shí)數(shù).               4分
經(jīng)檢驗(yàn),當(dāng)時(shí),取得極小值,故.             6分
(2)當(dāng)時(shí),.
,∴.             8分
∵在區(qū)間上,;在區(qū)間上,,
∴在區(qū)間上,函數(shù)單調(diào)遞減;在區(qū)間上,函數(shù)單調(diào)遞增.10分
.        11分
,∴.       12分
考點(diǎn):1導(dǎo)數(shù);2用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=.
(1)確定yf(x)在(0,+∞)上的單調(diào)性;
(2)若a>0,函數(shù)h(x)=xf(x)-xax2在(0,2)上有極值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax3x2cxd(ac,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求ac,d的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-aln xx(a≠0),
(1)若曲線yf(x)在點(diǎn)(1,f(1))處的切線與直線x-2y=0垂直,求實(shí)數(shù)a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=exkx2,x∈R.
(1)若k,求證:當(dāng)x∈(0,+∞)時(shí),f(x)>1;
(2)若f(x)在區(qū)間(0,+∞)上單調(diào)遞增,試求k的取值范圍;
(3)求證:<e4(n∈N*)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線是曲線的一條切線,.
(1)求切點(diǎn)坐標(biāo)及的值;
(2)當(dāng)時(shí),存在,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),函數(shù)
(1)當(dāng)時(shí),求內(nèi)的極大值;
(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.(其中的導(dǎo)函數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(Ⅰ)求函數(shù)單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

。
(Ⅰ)求的極值點(diǎn);
(Ⅱ)當(dāng)時(shí),若方程上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(Ⅲ)證明:當(dāng)時(shí),。

查看答案和解析>>

同步練習(xí)冊答案