【題目】設(shè)正項等差數(shù)列的前n項和為,已知且成等比數(shù)列
(1)求數(shù)列的通項公式;
(2)若,求數(shù)列的前n項和;
(3)設(shè)數(shù)列滿足求證:
【答案】(1) (2) 數(shù)列的前n項和為 (3)證明見解析.
【解析】
(1)等差數(shù)列的首項為,公差為,由條件可得,,即,兩式聯(lián)立可得:,或,經(jīng)檢驗滿足條件.
(2)設(shè),可得當時,,當時,,則當時,,當時,,分情況求和即可.
(3) 由(1)有,由有,則則或,若則不等式顯然成立. 若,則,由裂項相消法求和可證明.
(1)等差數(shù)列的首項為,公差為,
由有,即…… ①
由成等比數(shù)列,有,即……②
將①代入②得:
即解得:,或.
當時,與題目矛盾,舍去.
當時,,滿足條件,此時
(2)設(shè),
當時,,即
當時,,即
設(shè)數(shù)列的前n項和為
所以當時,
當時,
所以數(shù)列的前n項和為
(3)由(1)有
由有,所以
則或
若則不等式顯然成立.
若,
則
即所以
則
綜上所以成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且.
(1)求數(shù)列的通項公式;
(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;
(3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,拋物線的準線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)如圖,點分別是橢圓的左頂點、左焦點直線與橢圓交于不同的兩點(都在軸上方).且.證明:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),如果存在函數(shù)(為常數(shù)),使得對一切實數(shù)都成立,則稱為函數(shù)的一個承托函數(shù).給出如下命題:
① 函數(shù)是函數(shù)的一個承托函數(shù);
② 函數(shù)是函數(shù)的一個承托函數(shù);
③ 若函數(shù)是函數(shù)的一個承托函數(shù),則的取值范圍是;
④ 值域是的函數(shù)不存在承托函數(shù)。 其中,所有正確命題的序號是__.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】目前我國城市的空氣污染越來越嚴重,空氣質(zhì)量指數(shù)一直居高不下,對人體的呼吸系統(tǒng)造成了嚴重的影響,現(xiàn)調(diào)查了某城市500名居民的工作場所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:
室外工作 | 室內(nèi)工作 | 合計 | |
有呼吸系統(tǒng)疾病 | 150 | ||
無呼吸系統(tǒng)疾病 | 100 | ||
合計 | 200 |
(Ⅰ)請把列聯(lián)表補充完整;
(Ⅱ)你是否有95%的把握認為感染呼吸系統(tǒng)疾病與工作場所有關(guān);
(Ⅲ)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個容量為6的樣本,將該樣本看成一個總體,從中隨機抽取2人,求2人都有呼吸系統(tǒng)疾病的概率.
參考公式與臨界表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且.
(1)求數(shù)列的通項公式;
(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;
(3)若,求數(shù)列的前項和。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若在處取得極值,求的值;
(2)設(shè),試討論函數(shù)的單調(diào)性;
(3)當時,若存在正實數(shù)滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)n∈N*,f(n)=3n+7n-2.
(1)求f(1),f(2),f(3)的值;
(2)證明:對任意正整數(shù)n,f(n)是8的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面圖形很多可以推廣到空間中去,例如正三角形可以推廣到正四面體,圓可以推廣到球,平行四邊形可以推廣到平行六面體,直角三角形也可以推廣到直角四面體,如果四面體中棱兩兩垂直,那么稱四面體為直角四面體. 請類比直角三角形中的性質(zhì)給出2個直角四面體中的性質(zhì),并給出證明.(請在結(jié)論中選擇1個,結(jié)論4,5中選擇1個,寫出它們在直角四面體中的類似結(jié)論,并給出證明,多選不得分,其中表示斜邊上的高,分別表示內(nèi)切圓與外接圓的半徑)
直角三角形 | 直角四面體 | |
條件 | ||
結(jié)論1 | ||
結(jié)論2 | ||
結(jié)論3 | ||
結(jié)論4 | ||
結(jié)論5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com