【題目】如圖,在多面體中,梯形與平行四邊形所在平面互相垂直, ,,,,.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判斷線段上是否存在點(diǎn),使得平面平面?若存在,求 出的值,若不存在,說(shuō)明理由.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ);(Ⅲ)
【解析】
(Ⅰ)根據(jù)線線平行得線面平行平面,平面,再根據(jù)線面平行得面面平行平面平面,最后由面面平行性質(zhì)得結(jié)論,(Ⅱ)先根據(jù)面面垂直得線面垂直平面,再得線線垂直,類似可得進(jìn)而建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解得平面法向量,利用向量數(shù)量積得兩法向量夾角,最后根據(jù)二面角與法向量夾角關(guān)系得結(jié)果,(Ⅲ)先設(shè),再利用方程組解得平面法向量,最后根據(jù)兩法向量數(shù)量積為零解得結(jié)果.
(Ⅰ)由底面為平行四邊形,知,
又因?yàn)?/span>平面,平面, 所以平面.
同理平面,又因?yàn)?/span>,所以平面平面.
又因?yàn)?/span>平面,所以平面
(Ⅱ)連接,因?yàn)槠矫?/span>平面,平面平面,,
所以平面. 則.
又因?yàn)?/span>,,, 所以平面,則.
故兩兩垂直,所以以所在的直線分別為軸、軸和軸,如圖建立空間直角坐標(biāo)系,則,,,,,, 所以,,為平面的一個(gè)法向量.
設(shè)平面的一個(gè)法向量為,
由,,得 令,得.
所以.
如圖可得二面角為銳角, 所以二面角的余弦值為.
(Ⅲ)結(jié)論:線段上存在點(diǎn),使得平面平面.
證明如下:設(shè),所以. 設(shè)平面的法向量為,又因?yàn)?/span>,所以,,即 令,得.
若平面平面,則,即, 解得.
所以線段上存在點(diǎn),使得平面平面,且此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,.
(1)求證:平面PAD;
(2)求PD與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),k∈R.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當(dāng)k>0時(shí),若函數(shù)f(x)在區(qū)間(1,2)內(nèi)單調(diào)遞減,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,, ,,,,為側(cè)棱上一點(diǎn).
(1)若,求證:平面;
(2)求證:平面平面;
(3)在側(cè)棱上是否存在點(diǎn),使得平面? 若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐中,四邊形為矩形,,,.
(1)求證:平面;
(2)設(shè),求平面與平面所成的二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市有兩家大型石油煉化廠,這兩家石油煉化廠所生產(chǎn)的成品油都要通過(guò)甲、乙兩條輸油管道輸送到各地進(jìn)行銷售.由于地理位置及兩家石油煉化廠的生產(chǎn)能力的不同,石油煉化廠生產(chǎn)的成品油通過(guò)甲、乙兩條輸油管道輸送時(shí)每噸的運(yùn)費(fèi)分別為1元和1.6元,石油煉化廠生產(chǎn)的成品油通過(guò)甲、乙兩條輸油管道輸送時(shí)每噸的運(yùn)費(fèi)分別為0.8元和1.5元.甲輸油管道每年最多能輸送290萬(wàn)噸成品油,乙輸油管道每年最多能輸送320萬(wàn)噸成品油.石油煉化廠每年生產(chǎn)180萬(wàn)噸成品油,石油煉化廠每年生產(chǎn)240萬(wàn)噸成品油.規(guī)定石油煉化廠通過(guò)甲輸油管道輸送的成品油與石油煉化廠通過(guò)甲輸油管道輸送的成品油的二倍之和不超過(guò)490萬(wàn)噸.問(wèn):兩家煉化廠采用什么樣的輸油方案,能使總的運(yùn)費(fèi)最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“干支紀(jì)年法”是中國(guó)歷法上自古以來(lái)使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_(kāi)始,“地支”以“子”字開(kāi)始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序?yàn)椋杭鬃印⒁页、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得?/span>個(gè)組成,周而復(fù)始,循環(huán)記錄。2014年是“干支紀(jì)年法”中的甲午年,那么2020年是“干支紀(jì)年法”中的()
A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,,,為的中點(diǎn),是與的交點(diǎn),將沿翻折到圖中的位置,得到四棱錐.
(1)求證:;
(2)當(dāng),時(shí),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若為的極值點(diǎn),求實(shí)數(shù)的值;
(2)若在上是單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com