【題目】已知橢圓的左,右焦點分別為,離心率為,上的一個動點.當的上頂點時,的面積為

1)求的方程;

2)設斜率存在的直線的另一個交點為.若存在點,使得,求的取值范圍.

【答案】(1);(2)

【解析】

1)結合橢圓性質(zhì),計算a,b的值,得到橢圓方程,即可。(2)設出直線PQ的方程,代入橢圓方程,利用韋達定理,建立等式,用k表示t,結合函數(shù)的性質(zhì),計算范圍,即可。

(1)設橢圓的半焦距為c。

因為,所以,

,

所以.

所以C得方程為

(2)設直線PQ的方程為,PQ的中點為.

k=0時,t=0符合題意.

當k≠0時,由

所以

因為

所以TNPQ,則KTN·k=-1,

所以

因為,所以.

綜上,t的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求不等式的解集;

(2)若直線的圖象所圍成的多邊形面積為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐的底面為邊長為的菱形,中點,連接.

(Ⅰ)求證:平面平面;

(Ⅱ)若平面平面,且二面角的余弦值為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于一個向量組,令,如果存在,使得,那么稱是該向量組的“長向量”

1)若是向量組的“長向量”,且,求實數(shù)的取值范圍;

2)已知,均是向量組的“長向量”,試探究,的等量關系并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型工廠招聘到一大批新員工.為了解員工對工作的熟練程度,從中隨機抽取100人組成樣本,并統(tǒng)計他們的日加工零件數(shù),得到以下數(shù)據(jù);

(1)已知日加工零件數(shù)在范圍內(nèi)的5名員工中,有3名男工,2名女工,現(xiàn)從中任取兩名進行指導,求他們性別不同的概率;

(2)完成頻率分布直方圖,并估計全體新員工每天加工零件數(shù)的平均數(shù)(每組數(shù)據(jù)以中點值代替);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】語文中回文句,如:“黃山落葉松葉落山黃,西湖垂柳絲柳垂湖西.”,倒過來讀完全一樣,數(shù)學中也有類似現(xiàn)象,無論從左往右讀,還是從右往左讀,都是同一個數(shù),稱這樣的數(shù)為回文數(shù)”!二位的回文數(shù)有11,22,3344,55,6677,88,99,共9;三位的回文數(shù)有101,111,121,131,,969,979,989999,共90;四位的回文數(shù)有10011111,1221,9669,9779,9889999,共90;五位的回文數(shù)有1000111111,12221,,9666997779,98889,99999900個,由此推測:10位的回文數(shù)總共有_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的菱形,是等邊三角形,,分別是的中點.

(Ⅰ)求證:平面

(Ⅱ)求直線所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知、分別是橢圓的左、右焦點,點在橢圓上,且的面積為

1)求橢圓的方程;

2)設直線與橢圓交于兩點,為坐標原點,軸上是否存在點,使得,若存在,求出點的坐標;若不存在,請說明理由;

3)設為橢圓上非長軸頂點的任意一點,為線段上一點,若的內(nèi)切圓面積相等,求證:線段的長度為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究機構為了了解各年齡層對高考改革方案的關注程度,隨機選取了200名年齡在內(nèi)的市民進行了調(diào)查,并將結果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人在座談會中作重點發(fā)言,求作重點發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

同步練習冊答案