【題目】已知為正項數(shù)列的前n項和,且滿足.

(1)求出,

(2)猜想的通項公式并給出證明.

【答案】(1) (2)

【解析】試題分析:(1)根據(jù)利用遞推公式, 代入即可求出;(2)由(1)猜想的通項公式,可由,化簡整理,即可得數(shù)列{an}是首項a1=1,公差d=1的等差數(shù)列,進而可得結論.

試題解析:(1)由Sn an(n∈N)(2)

可得a1 a1,解得a1=1,S2a1a2 a2,解得a2=2,

同理a3=3,a4=4,

(2)由(1)猜想ann.

證明:由Sn an

n≥2時,Sn-1 an-1, ②

①-②得(anan-1-1)(anan-1)=0,

anan-1≠0,∴anan-1=1,又a1=1,故數(shù)列{an}是首項a1=1,公差d=1的等差數(shù)列,故

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市舉行的“國際馬拉松賽”,舉辦單位在活動推介晚會上進行嘉賓現(xiàn)場抽獎活動,抽獎盒中裝有6個大小相同的小球,分別印有“快樂馬拉松”和“美麗綠城行”兩種標志,搖勻后,參加者每次從盒中同時抽取兩個小球(取出后不再放回),若抽到的兩個球都印有“快樂馬拉松”標志即可獲獎.并停止取球;否則繼續(xù)抽取,第一次取球就抽中獲一等獎,第二次取球抽中獲二等獎,第三次取球抽中獲三等獎,沒有抽中不獲獎.活動開始后,一位參賽者問:“盒中有幾個印有‘快樂馬拉松’的小球?”主持人說:“我只知道第一次從盒中同時抽兩球,不都是‘美麗綠城行’標志的概率是

(1)求盒中印有“快樂馬拉松”小球的個數(shù);

(2)若用表示這位參加者抽取的次數(shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)市場調(diào)研,某超市一種玩具在過去一個月(按30天)的銷售量(件)與價格(元)均為時間(天)的函數(shù),且銷售量近似滿足,價格近似滿足

1)試寫出該種玩具的日銷售額與時間, )的函數(shù)關系式;

2)求該種玩具的日銷售額的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,P是正方體ABCD-A1B1C1D1中BC1上的動點,下列說法:

①AP⊥B1C;②BP與CD1所成的角是60°;③三棱錐的體積為定值;④B1P∥平面D1AC;⑤二面角P-AB-C的平面角為45°.

其中正確說法的個數(shù)有 ( )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了響應我市“創(chuàng)建宜居港城,建設美麗莆田”,某環(huán)保部門開展以“關愛木蘭溪,保護母親河”為主題的環(huán)保宣傳活動,將木蘭溪流經(jīng)市區(qū)河段分成段,并組織青年干部職工對每一段的南、北兩岸進行環(huán)保綜合測評,得到分值數(shù)據(jù)如下表:

南岸

77

92

84

86

74

76

81

71

85

87

北岸

72

87

78

83

83

85

75

89

90

95

(Ⅰ)記評分在以上(包括)為優(yōu)良,從中任取一段,求在同一段中兩岸環(huán)保評分均為優(yōu)良的概率;

(Ⅱ)根據(jù)表中數(shù)據(jù)完成下面莖葉圖;

)分別估計兩岸分值的中位數(shù),并計算它們的平均值,試從計算結果分析兩岸環(huán)保情況,哪邊保護更好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解校園安全教育系列活動的成效,對全校3000名學生進行一次安全意識測試,根據(jù)測試成績評定“優(yōu)秀”、“良好”、“及格”、“不及格”四個等級,現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如下所示.

等級

不及格

及格

良好

優(yōu)秀

得分

頻數(shù)

6

24

1)求的值;

2)試估計該校安全意識測試評定為優(yōu)秀的學生人數(shù);

3)已知已采用分層抽樣的方法,從評定等級為優(yōu)秀良好的學生中任選6人進行強化培訓;現(xiàn)再從這6人中任選2人參加市級校園安全知識競賽,求選取的2人中有1人為優(yōu)秀的概率;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體中, 平面,

1)在上求作點,使平面,請寫出作法并說明理由;

2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)函數(shù),若的極值點,求的值并討論的單調(diào)性;

(2)函數(shù)有兩個不同的極值點,其極小值為為,試比較的大小關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知、分別是橢圓 的左、右焦點,點是橢圓上一點,且.

(1)求橢圓的方程;

(2)設直線與橢圓相交于,兩點,若,其中為坐標原點,判斷到直線的距離是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案